分析 首先题目要求应用数学归纳法证明不等式,数学归纳法的一般步骤是,第一步验证第一项是否成立,第二步假设n=k时候结论成立,去验证n=k+1时候结论是否成立.若都成立即得证.
解答 证明:①当n=1时,左边=$\frac{1}{1×(1+1)}$=$\frac{1}{2}$,右边=$\frac{1}{2}$,等式成立;
②假设n=k时,等式成立;即$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{k(k+1)}$=$\frac{k}{k+1}$,
当n=k+1时,左边=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{{k}^{2}+k}$+$\frac{1}{(k+1)(k+2)}$=$\frac{k}{k+1}$+$\frac{1}{(k+1)(k+2)}$=$\frac{k+1}{k+1+1}$,
即当n=k+1时,等式成立,
由①②可知等式成立.
点评 本题主要考查的是用数学归纳法证明不等式,属于中档题目,同学们做题的时候要注意分析题目要求切忌不能用别的方法证明.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{13}{9}$ | D. | $\frac{9}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com