精英家教网 > 高中数学 > 题目详情
函数y=log
1
2
(1+λcosx)的最小值是-2,则λ的值是
 
考点:对数函数的图像与性质
专题:函数的性质及应用
分析:t=1+λcosx,0<t≤1+|λ|,根据单调性确定y=log 
1
2
t,的最小值为log 
1
2
(1+|t|),即可得出-2=log 
1
2
(1+|t|),
求解即可得出λ的值.
解答: 解:函数y=log
1
2
(1+λcosx)t=1+λcosx,0<t≤1+|λ|,
∴y=log 
1
2
t,0<t≤1+|λ|,单调递减函数,
∴y=log 
1
2
t,的最小值为log 
1
2
(1+|t|),
∵最小值是-2,
∴-2=log 
1
2
(1+|t|),
∴|λ|=3,λ=±3
故答案为:±3
点评:本题考查了复合函数的单调性,三角函数,对数函数的性质,运算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={3,a2-2a+3},集合B={a,b},若A∩B={2},则A∪B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一条河的两岸是平行线,两岸边各有一个小镇A与B,它们的直线距离为2km,河宽AC=1km,根据规划,需要在两岸间铺设一条电缆线,从A处铺设水下电缆到D处(D为线段BC上的点),再从D处铺设地下电缆到B处,已知铺设水下电缆的费用是铺设地下电缆费用的2倍,记∠ADC=θ.
(1)设铺设地下电缆的费用是a元/km,试将该项目工程的总费用y表示成θ的函数;
(2)当θ为何值时,工程的总费用y最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x-2y-2k=0与2x-3y-k=0的交点在圆x2+y2=9的外部,则k的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:4x2+y2=1及直线l:y=x+m,m∈R.
(1)当m为何值时,直线l与椭圆C有公共点?
(2)若直线l被椭圆C截得的弦长为
2
2
5
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+
a
2x
-1(a为实数).
(Ⅰ)当a=0时,求方程|f(x)|=
1
2
的根;
(Ⅱ)当a=-1时,若对于任意t∈(1,4],不等式f(t2-2t)-f(2t2-k)>0恒成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是菱形,且PB=PD.
(1)求证:BD⊥PC;
(2)若平面PBC与平面PAD的交线为l,求证:BC∥l.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为a的正方形,D1是底面ABCD上的射影E恰好是CD的中点,BD1⊥DC1
(1)求证:DC1⊥平面BCD1
(2)求点A到平面BB1D1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2x2-3x+3的单调区间.

查看答案和解析>>

同步练习册答案