| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\frac{5}{2}$ |
分析 设实轴长为2a,虚轴长为2b,令∠AOF=α,则由题意知tanα=$\frac{b}{a}$,△AOB中,∠AOB=180°-2α,tan∠AOB=-tan2α=$\frac{AB}{OA}$,由此推导出-tan2α=-$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{4}{3}$,从而能求出离心率.
解答 解:如图,设实轴长为2a,虚轴长为2b,![]()
令∠AOF=α,则由题意知tanα=$\frac{b}{a}$,
△AOB中,∠AOB=180°-2α,tan∠AOB=-tan2α
=$\frac{AB}{OA}$,
∵|$\overrightarrow{OA}$|,|$\overrightarrow{AB}$|,|$\overrightarrow{OB}$|成等差数列,
∴设|$\overrightarrow{OA}$|=m-d、|$\overrightarrow{AB}$|=m、|$\overrightarrow{OB}$|=m+d,
∵OA⊥BF,∴(m-d)2+m2=(m+d)2,
整理,得d=$\frac{1}{4}$m,
∴-tan2α=-$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{4}{3}$
解得$\frac{b}{a}$=2或$\frac{b}{a}$=-$\frac{1}{2}$(舍),
∴b=2a,c=$\sqrt{5}$a,
∴e=$\frac{c}{a}$=$\sqrt{5}$.
故选C.
点评 本题考查双曲线的离心率的求法,考查等差数列的性质,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 最小正周期为2π的偶函数 | B. | 最小正周期为2π的奇函数 | ||
| C. | 最小正周期为π的偶函数 | D. | 最小正周期为π的奇函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,3) | B. | [2,3) | C. | (-∞,2) | D. | (-1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com