精英家教网 > 高中数学 > 题目详情
19.已知某三棱锥的三视图如图所示,则该三棱锥外接球的表面积是(  )
A.$\sqrt{6}π$B.C.24πD.36π

分析 由已知可得该几何体是一个以俯视图为底面的三棱锥,其外接球相当于一个长,宽,高分别为1,1,2的长方体的外接球,进而得到答案.

解答 解:由已知可得该几何体是一个以俯视图为底面的三棱锥,
其外接球相当于一个长,宽,高分别为1,1,2的长方体的外接球,
故4R2=12+12+22=6,
故该三棱锥外接球的表面积S=6π,
故选:B.

点评 本题考查的知识点是球的体积和表面积,球的内接多面体,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2 于 A,B 两点.若|$\overrightarrow{OA}$|,|$\overrightarrow{AB}$|,|$\overrightarrow{OB}$|成等差数列,且$\overrightarrow{BF}$与$\overrightarrow{FA}$反向,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数$y=2sin(2x+\frac{π}{6})$的图象向左平移$\frac{1}{4}$个周期后,所得图象对应的函数为(  )
A.$y=2sin(2x+\frac{2π}{3})$B.$y=2sin(2x+\frac{5π}{12})$C.$y=2sin(2x-\frac{π}{3})$D.$y=2sin(2x-\frac{π}{12})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点G(5,4),圆C1:(x-1)2+(y-4)2=25,过点G的动直线l与圆C1,相交于两点E、F,线段EF的中点为C.
(Ⅰ)求点C的轨迹C2的方程;
(Ⅱ)若过点A(1,0)的直线l1:kx-y-k=0,与C2相交于两点P、Q,线段PQ的中点为M,l1与l2:x+2y+2=0的交点为N,求证:|AM|•|AN|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.按照图中的程序框图执行,若M处条件是k>16,则输出结果为(  )
A.15B.16C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{an}各项均为正数,且满足a1=1,$\sqrt{\frac{1}{a_n^2}+3}=\sqrt{\frac{1}{{a_{n+1}^2}}}$.记${b_n}=\frac{1}{{a_n^2a_{n+1}^2}}$,数列{bn}前n项的和为Sn,若Sn<t对任意的n∈N*恒成立,则实数t的取值范围是$[{\frac{1}{3},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\frac{1}{x}$+$\frac{1}{3-x}$(0<x<3)的最小值为(  )
A.1B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平面直角坐标系xOy中,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F,上顶点为B,M 为线段BF 的中点,若∠MOF=30°,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,已知a3+a8=6,则3a2+a16的值为(  )
A.24B.18C.16D.12

查看答案和解析>>

同步练习册答案