精英家教网 > 高中数学 > 题目详情
已知数列满足,且对任意的正整数均成等比数列.
(1)求的值;
(2)证明:均成等比数列;
(3)是否存在唯一正整数,使得恒成立?证明你的结论.
(1);(2)详见解析;(3)详见解析.

试题分析:本题考查数列的求值,等比数列的证明和研究不等式的恒成立问题.(1)通过题设条件给出的数列关系,求出数列的初始值;(2)根据等比数列的定义,分别得到证明,其中应说明第一项不为零;(3)探求是否存在唯一的正整数使得恒成立分两步求解,先通过数列的单调性得到,再证明证整数时唯一的,求解有关数列的综合问题,主要是要明确解题方向,合理利用数列的相关性质化难为易,化繁为简,同时还要注意解题步骤的规范性和严谨性.
试题解析:(1)依题意,
(2)证明:依题意,对任意正整数,即

数列是首项为,公比为的等比数列,
,又
数列是首项为,公比为的等比数列.
(3)由(2)得,解得,显然,数列是单调递增的数列,是单调递减的数列,即存在正整数,使得对任意的,有
又令,而
,解得,即对任意的时,
正整数也是唯一的.
综上所述,存在唯一的正整数,使得对任意的,有.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设数列{an} 的前n项和为Sn,满足2Sn=an+1﹣2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)求a1,a2,a3的值;
(2)求证:数列{an+2n}是等比数列;
(3)证明:对一切正整数n,有++…+

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列中,已知时,.数列满足:
(1)证明:为等差数列,并求的通项公式;
(2)记数列的前项和为,若不等式成立(为正整数).求出所有符合条件的有序实数对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是公差大于零的等差数列,已知.
(Ⅰ)求的通项公式;
(Ⅱ)设是以函数的最小正周期为首项,以为公比的等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列中,公差,其前项和为,且满足:
(Ⅰ)求数列的通项公式;
(Ⅱ)令),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列中,.
(1)证明:数列是等比数列,并求数列的通项公式;
(2)在数列中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若,求证:使得成等差数列的点列在某一直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等差数列中,,记数列的前项和为,若恒成立,则正整数的最小值为(    )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等差数列的前项和为,则数列的公差          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列为等差数列,若,则公差    .

查看答案和解析>>

同步练习册答案