20£®Íø¹ºÊǵ±Ç°ÃñÖÚ¹ºÎïµÄз½Ê½£¬Ä³¹«Ë¾Îª¸Ä½øÓªÏú·½Ê½£¬Ëæ»úµ÷²éÁË100ÃûÊÐÃñ£¬Í³¼ÆÆäÖÜÆ½¾ùÍø¹ºµÄ´ÎÊý£¬²¢ÕûÀíµÃµ½ÈçÏÂµÄÆµÊý·Ö²¼Ö±·½Í¼£®Õâ100ÃûÊÐÃñÖУ¬ÄêÁä²»³¬¹ý40ËêµÄÓÐ65È˽«Ëù³éÑù±¾ÖÐÖÜÆ½¾ùÍø¹º´ÎÊý²»Ð¡ÓÚ4´ÎµÄÊÐÃñ³ÆÎªÍø¹ºÃÔ£¬ÇÒÒÑÖªÆäÖÐÓÐ5ÃûÊÐÃñµÄÄêÁ䳬¹ý40Ë꣮
£¨1£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±í£¬ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.10µÄǰÌáÏÂÈÏÎªÍø¹ºÃÔÓëÄêÁä²»³¬¹ý40ËêÓйأ¿
Íø¹ºÃÔ·ÇÍø¹ºÃԺϼÆ
ÄêÁä²»³¬¹ý40Ëê
ÄêÁ䳬¹ý40Ëê
ºÏ¼Æ
£¨2£©Èô´ÓÍø¹ºÃÔÖÐÈÎÒâѡȡ2Ãû£¬ÇóÆäÖÐÄêÁä³ó°¡¹ý40ËêµÄÊÐÃñÈËÊý¦ÎµÄ·Ö²¼ÁÐÓëÆÚÍû£®
¸½£º${k^2}=\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£»
P£¨K2¡Ýk0£©0.150.100.050.01
k02.0722.7063.8416.635

·ÖÎö £¨1£©ÓÉÌâÒâÌîдÁÐÁª±í£¬¼ÆËã¹Û²âÖµ£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£»
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼£¬½áºÏÌâÒâÖª¦ÎµÄËùÓÐȡֵ£¬
¼ÆËã¶ÔÓ¦µÄ¸ÅÂÊ£¬Ð´³ö·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍûÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃÁÐÁª±íÈçÏ£º

Íø¹ºÃÔ·ÇÍø¹ºÃԺϼÆ
ÄêÁä²»³¬¹ý40Ëê204565
ÄêÁ䳬¹ý40Ëê53035
ºÏ¼Æ2575100
¼ÙÉèÍø¹ºÃÔÓëÄêÁä²»³¬¹ý40ËêûÓйØÏµ£¬
Ôò$k=\frac{{100¡Á{{£¨20¡Á30-45¡Á5£©}^2}}}{65¡Á35¡Á25¡Á75}¡Ö$3.297£¾2.706£¬
ËùÒÔ¿ÉÒÔÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.10µÄǰÌáÏÂÈÏÎªÍø¹ºÃÔÓëÄêÁä²»³¬¹ý40ËêÓйأ»
£¨2£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼¿ÉÖª£¬Íø¹ºÃÔ¹²ÓÐ25Ãû£¬
ÓÉÌâÒâµÃÄêÁ䳬¹ý40µÄÊÐÃñÈËÊý¦ÎµÄËùÓÐȡֵΪ0£¬1£¬2£¬
$P£¨¦Î=0£©=\frac{{C_{20}^2}}{{C_{25}^2}}=\frac{19}{30}$£¬
$P£¨¦Î=1£©=\frac{{C_{20}^1C_5^1}}{{C_{25}^2}}=\frac{1}{3}$£¬
$P£¨¦Î=2£©=\frac{C_5^2}{{C_{25}^2}}=\frac{1}{30}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ
¦Î012
P$\frac{19}{30}$$\frac{1}{3}$$\frac{1}{30}$
ÊýѧÆÚÍûֵΪ$E¦Î=0¡Á\frac{19}{30}+1¡Á\frac{1}{3}+2¡Á\frac{1}{30}=\frac{2}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÓëÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄ¼ÆËãÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÖ±½Ç×ø±êϵx0yÖУ¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬÇúÏßCµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\frac{sin¦È}{{1-{{sin}^2}¦È}}$£®
£¨1£©½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£»
£¨2£©¹ýµãP£¨0£¬2£©×÷бÂÊΪ1µÄÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬
¢ÙÇóÏß¶ÎABµÄ³¤£»  
¢Ú$\frac{1}{|PA|}+\frac{1}{|PB|}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=4sin£¨¦È-\frac{¦Ð}{6}£©$£®
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãΪP£¨x£¬y£©ÎªÖ±ÏßlÓëÔ²CËù½ØµÃµÄÏÒÉϵ͝µã£¬Çó$\sqrt{3}x+y$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=x2+ax-lnx£¨a¡ÊR£¬aΪ³£Êý£©
£¨1£©µ±a=-1ʱ£¬Èô·½³Ìf£¨x£©=$\frac{b}{x}$ÓÐʵ¸ù£¬ÇóbµÄ×îСֵ£»
£¨2£©ÉèF£¨x£©=f£¨x£©•e-x£¬ÈôF£¨x£©ÔÚÇø¼ä£¨0£¬1]ÉÏÊǵ¥µ÷º¯Êý£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚÊýÁÐ{an}ÖУ¬a2=$\frac{2}{3}$£®
£¨1£©ÈôÊýÁÐ{an}Âú×ã2an-an+1=0£¬Çóan£»
£¨2£©Èôa4=$\frac{4}{7}$£¬ÇÒÊýÁÐ{£¨2n-1£©an+1}ÊǵȲîÊýÁУ¬ÇóÊýÁÐ{$\frac{n}{{a}_{n}}$}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+cos¦Á}\\{y=sin¦Á}\end{array}}\right.$£¨¦ÁΪ²ÎÊý£¬¦Á¡Ê[0£¬¦Ð]£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\frac{4}{{\sqrt{2}sin£¨{¦È-\frac{¦Ð}{4}}£©}}$£®
£¨1£©Ð´³öÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©PΪÇúÏßCÉÏÈÎÒâÒ»µã£¬QΪֱÏßlÈÎÒâÒ»µã£¬Çó|PQ|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¹«²îΪ2µÄµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£®ÈôS3=12£¬Ôòa3=£¨¡¡¡¡£©
A£®4B£®6C£®8D£®14

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôº¯Êýf£¨x£©=2sin¦Øx£¨0£¼¦Ø£¼1£©ÔÚÇø¼ä$[{0£¬\frac{¦Ð}{3}}]$ÉϵÄ×î´óֵΪ1£¬Ôò¦Ø=£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{3}$C£®$\frac{1}{2}$D£®$\frac{{\sqrt{3}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÈýÀâ×¶P---ABCµÄËĸö¶¥µã¾ùÔÚͬһ¸öÇòÃæÉÏ£¬µ×Ãæ¡÷ABCÂú×ã$BA=BC=\sqrt{6}$£¬$¡ÏABC=\frac{¦Ð}{2}$£¬Èô¸ÃÈýÀâ×¶Ìå»ýµÄ×î´óֵΪ3£¬ÔòÆäÍâ½ÓÇòµÄÌå»ýΪ£¨¡¡¡¡£©
A£®8¦ÐB£®16¦ÐC£®$\frac{16}{3}¦Ð$D£®$\frac{32}{3}¦Ð$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸