精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2+ax-lnx(a∈R,a为常数)
(1)当a=-1时,若方程f(x)=$\frac{b}{x}$有实根,求b的最小值;
(2)设F(x)=f(x)•e-x,若F(x)在区间(0,1]上是单调函数,求a的取值范围.

分析 (1)把a=-1代入函数解析式,求导得到导函数的零点,求得原函数的最值,把f(x)=$\frac{b}{x}$转化为b=xf(x),则b的最小值可求;
(2)求出F′(x)=$\frac{-{x}^{2}+(2-a)x+a-\frac{1}{x}+lnx}{{e}^{x}}$.设h(x)=$-{x}^{2}+(2-a)x+a-\frac{1}{x}+lnx$,可得h′(x)≥2-a.然后分a≤2和a>2研究F(x)在区间(0,1]上是否为单调函数,从而求得a的取值范围.

解答 解:(1)当a=-1时,f(x)=x2+x-lnx,
f′(x)=2x-1-$\frac{1}{x}$=$\frac{(x-1)(2x+1)}{x}$.
当x∈(0,1)时,f′(x)<0,f(x)为减函数;当x∈(1,+∞)时,f′(x)>0,f(x)为增函数.
∴f(x)≥f(1)=0.
由f(x)=$\frac{b}{x}$,得b=xf(x),
又x>0,∴b≥0.
即b的最小值为0;
(2)F(x)=f(x)•e-x
F′(x)=$\frac{-{x}^{2}+(2-a)x+a-\frac{1}{x}+lnx}{{e}^{x}}$.
设h(x)=$-{x}^{2}+(2-a)x+a-\frac{1}{x}+lnx$.
则h′(x)=-2x+$\frac{1}{{x}^{2}}+\frac{1}{x}+2-a$,可知h′(x)在(0,1]上为减函数.
从而h′(x)≥h′(1)=2-a.
①当2-a≥0,即a≤2时,h′(x)≥0,h(x)在区间(0,1]上为增函数,
∵h(1)=0,∴h(x)≤0在区间(0,1]上恒成立,即F′(x)≤0在区间(0,1]上恒成立.
∴F(x)在区间(0,1]上是减函数,故a≤2满足题意;
②当2-a<0,即a>2时,设函数h′(x)的唯一零点为x0,则h(x)在(0,x0)上单调递增,在(x0,1)上单调递减.
又∵h(1)=0,∴h(x0)>0.
∴F(x)在(x0,1)上单调递增,
∵h(e-a)<0,∴F(x)在(0,e-a)上递减,这与F(x)在区间(0,1]上是单调函数矛盾.
∴a>2不合题意.
综合①②得:a≤2.

点评 本题考查利用导数研究函数的单调性,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.曲线C1:ρsinθ-2=0,曲线C2:ρ-4cosθ=0,则曲线C1、C2的位置关系是(  )
A.相交B.相切C.重合D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=axlnx+b在点(1,f(1))处的切线方程为y=x-1,g(x)=λ(x-1)(其中λ为常数).
(1)求函数f(x)的解析式;
(2)若对任意x∈[1,+∞),不等式f(x)≥g(x)恒成立,求实数λ的取值范围;
(3)当x>1时,求证:[f(x-1)-(x-3)][f(ex)-3(ex-3)]≥9-e2(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$ (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{4}{1+si{n}^{2}θ}$,且直线l经过点F(-$\sqrt{2}$,0)
( I )求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,圆C的参数方程$\left\{\begin{array}{l}x=1+cosϕ\\ y=sinϕ\end{array}$(ϕ为参数).以O为极点,x轴的非负半轴为极轴建立坐标系.
(1)求圆C的极坐标方程;
(2)设直线l的极坐标方程是$2ρsin(θ+\frac{π}{3})=3\sqrt{3}$,射线$\sqrt{3}$x-y=0(x≥0)与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列参数方程中表示直线x+y-2=0的是(  )
A.$\left\{\begin{array}{l}x=2+t\\ y=1-t\end{array}\right.(t$为参数)B.$\left\{\begin{array}{l}x=1-\sqrt{t}\\ y=1+\sqrt{t}\end{array}\right.(t$为参数)
C.$\left\{\begin{array}{l}x=3+t\\ y=-1-t\end{array}\right.(t$为参数)D.$\left\{\begin{array}{l}x=1-{t^2}\\ y=1+{t^2}\end{array}\right.(t$为参数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.
(1)根据已知条件完成下面的2×2列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?
网购迷非网购迷合计
年龄不超过40岁
年龄超过40岁
合计
(2)若从网购迷中任意选取2名,求其中年龄丑啊过40岁的市民人数ξ的分布列与期望.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;
P(K2≥k00.150.100.050.01
k02.0722.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-kx+k.
(Ⅰ)若f(x)≥0有唯一解,求实数k的值;
(Ⅱ)证明:当a≤1时,x(f(x)+kx-k)<ex-ax2-1.
(附:ln2≈0.69,ln3≈1.10,${e^{\frac{3}{2}}}≈4.48$,e2≈7.39)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在直三棱柱ABC-A1B1C1中,AB=AC=2,∠BAC=$\frac{π}{3}$,BB1-=3,则侧棱BB1所在直线与平面AB1C1所成的角为(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

同步练习册答案