精英家教网 > 高中数学 > 题目详情
3.在直角坐标系xOy中,圆C的参数方程$\left\{\begin{array}{l}x=1+cosϕ\\ y=sinϕ\end{array}$(ϕ为参数).以O为极点,x轴的非负半轴为极轴建立坐标系.
(1)求圆C的极坐标方程;
(2)设直线l的极坐标方程是$2ρsin(θ+\frac{π}{3})=3\sqrt{3}$,射线$\sqrt{3}$x-y=0(x≥0)与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

分析 (1)因为$\left\{\begin{array}{l}x=1+cosϕ\\ y=sinϕ\end{array}\right.$,利用平方关系消参得:(x-1)2+y2=1,把x=ρcosθ,y=ρsinθ代入可得圆C的极坐标方程.
(2)射线$\sqrt{3}x-y=0(x≥0)$的极坐标方程是$θ=\frac{π}{3}$,设点P(ρ1,θ1),则:$\left\{\begin{array}{l}{ρ_1}=2cos{θ_1}\\{θ_1}=\frac{π}{3}\end{array}\right.$,解得ρ1,θ1.设点Q(ρ2,θ2),则:$\left\{\begin{array}{l}2{ρ_2}(sin{θ_2}+\frac{π}{3})=3\sqrt{3}\\{θ_2}=\frac{π}{3}\end{array}\right.$,解得ρ2,θ2,根据θ12,可得|PQ|=|ρ12|.

解答 解:(1)因为$\left\{\begin{array}{l}x=1+cosϕ\\ y=sinϕ\end{array}\right.$,消参得:(x-1)2+y2=1,
把x=ρcosθ,y=ρsinθ代入得(ρcosθ-1)2+(ρsinθ)2=1,所以圆C的极坐标方程为ρ=2cosθ;
(2)射线$\sqrt{3}x-y=0(x≥0)$的极坐标方程是$θ=\frac{π}{3}$,设点P(ρ1,θ1),则有:$\left\{\begin{array}{l}{ρ_1}=2cos{θ_1}\\{θ_1}=\frac{π}{3}\end{array}\right.$,解得$\left\{\begin{array}{l}{ρ_1}=1\\{θ_1}=\frac{π}{3}\end{array}\right.$,
设点Q(ρ2,θ2),则:$\left\{\begin{array}{l}2{ρ_2}(sin{θ_2}+\frac{π}{3})=3\sqrt{3}\\{θ_2}=\frac{π}{3}\end{array}\right.$,解得$\left\{\begin{array}{l}{ρ_2}=3\\{θ_2}=\frac{π}{3}\end{array}\right.$,
由于θ12,所以|PQ|=|ρ12|=2,所以线段PQ的长为2.

点评 本题考查了参数方程化为普通方程、直角坐标方程化为极坐标方程、曲线的交点、极坐标方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某商场为了了解太阳镜的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:由表中数据算出线性回归方程$\stackrel{∧}{y}$=bx+a中的b=2,气象部门预测下个月的平均气温约为20℃据此估计该商场下个月太阳镜销售量约为(  )件.
月平均气温x(℃)381217
月销售量y(件)24344454
A.46B.50C.54D.59

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某市国庆节7天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这7天的认购量与成交量作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.上述判断中错误的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为$ρ=4sin(θ-\frac{π}{6})$.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设点为P(x,y)为直线l与圆C所截得的弦上的动点,求$\sqrt{3}x+y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从0,1,2,3,4五个数字中随机取两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是$\frac{5}{8}$.(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2+ax-lnx(a∈R,a为常数)
(1)当a=-1时,若方程f(x)=$\frac{b}{x}$有实根,求b的最小值;
(2)设F(x)=f(x)•e-x,若F(x)在区间(0,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,a2=$\frac{2}{3}$.
(1)若数列{an}满足2an-an+1=0,求an
(2)若a4=$\frac{4}{7}$,且数列{(2n-1)an+1}是等差数列,求数列{$\frac{n}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.公差为2的等差数列{an}的前n项和为Sn.若S3=12,则a3=(  )
A.4B.6C.8D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知矩形ABCD中,AB=3,AD=4,沿矩形ABCD的对角线AC折起得三棱锥B-ACD,则三棱锥B-ACD的外接球半径R=$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案