精英家教网 > 高中数学 > 题目详情
14.某市国庆节7天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这7天的认购量与成交量作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.上述判断中错误的个数为(  )
A.1B.2C.3D.4

分析 结合图形及统计的基础知识逐一判定即可.

解答 解:7天假期的楼房认购量为:91、100、105、107、112、223、276;
成交量为:8、13、16、26、32、38、166.
对于①,日成交量的中位数是26,故错;
对于②,日平均成交量为:$\frac{8+13+16+26+32+38+166}{7}=42.7$,有1天日成交量超过日平均成交量,故错;
对于③,根据图形可得认购量与日期不是正相关,故错;
对于④,10月7日认购量的增幅大于10月7日成交量的增幅,正确.
故选:C.

点评 本题考查了统计的基础知识,解题关键是弄清图形所表达的含义,属于基础题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.4a5.25.9
y关于t的线性回归方程为$\stackrel{∧}{y}$=0.5t+2.3,则a的值为4.8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.将曲线ρ2(1+sin2θ)=2化为直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.f(x)=alnx+x2-b(x-1)-1,若对$?x∈[\frac{1}{e},+∞)$,f(x)≥0恒成立,则实数a的取值范围是(  )
A.$a≤{e}+\frac{1}{e}-2$B.a<2C.$\frac{2}{e}≤a<2$D.$a≤\frac{2}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在极坐标系中,以极点为坐标原点,极轴为x轴正半轴,建立直角坐标系,点M(2,$\frac{π}{6}}$)的直角坐标是($\sqrt{3},1$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=axlnx+b在点(1,f(1))处的切线方程为y=x-1,g(x)=λ(x-1)(其中λ为常数).
(1)求函数f(x)的解析式;
(2)若对任意x∈[1,+∞),不等式f(x)≥g(x)恒成立,求实数λ的取值范围;
(3)当x>1时,求证:[f(x-1)-(x-3)][f(ex)-3(ex-3)]≥9-e2(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,焦距为2.
(1)求椭圆的标准方程;
(2)若直线l:y=kx+m(k,m∈R)与椭圆C相交于A,B两点,且kOA•kOB=-$\frac{3}{4}$.
①求证:△AOB的面积为定值;
②椭圆C上是否存在一点P,使得四边形OAPB为平行四边形?若存在,求出点P横坐标的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,圆C的参数方程$\left\{\begin{array}{l}x=1+cosϕ\\ y=sinϕ\end{array}$(ϕ为参数).以O为极点,x轴的非负半轴为极轴建立坐标系.
(1)求圆C的极坐标方程;
(2)设直线l的极坐标方程是$2ρsin(θ+\frac{π}{3})=3\sqrt{3}$,射线$\sqrt{3}$x-y=0(x≥0)与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从3名男同学和2名女同学中任选2名参加体能测试,则恰有1名男同学参加体能测试的概率为$\frac{3}{5}$.(结果用最简分数表示)

查看答案和解析>>

同步练习册答案