精英家教网 > 高中数学 > 题目详情
5.将曲线ρ2(1+sin2θ)=2化为直角坐标方程.

分析 先把曲线的极坐标方程转化为ρ2cos2θ+2ρ2sin2θ=2,由此能求出曲线的直角坐标方程.

解答 解:∵ρ2(1+sin2θ)=2,
∴ρ2(cos2θ+2sin2θ)=2,
∴ρ2cos2θ+2ρ2sin2θ=2,即x2+2y2=2,
∴曲线的直角坐标方程为$\frac{{x}^{2}}{2}$+y2=1.

点评 本题考查曲线的直角坐标方程的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知z=(m2-1)+mi在复平面内对应的点在第二象限,则实数m的取值范围是(  )
A.(-1,1)B.(-1,0)C.(0,1)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.掷一颗骰子一次,设事件A=“出现奇数点”,事件B=“出现3点或4点”,则事件A,B的关系是(  )
A.互斥但不相互独立B.相互独立但不互斥
C.互斥且相互独立D.既不相互独立也不互斥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某商场为了了解太阳镜的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:由表中数据算出线性回归方程$\stackrel{∧}{y}$=bx+a中的b=2,气象部门预测下个月的平均气温约为20℃据此估计该商场下个月太阳镜销售量约为(  )件.
月平均气温x(℃)381217
月销售量y(件)24344454
A.46B.50C.54D.59

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点M的极坐标为(6,$\frac{11π}{6}$),则点M关于y轴对称的点的直角坐标为(  )
A.(-3$\sqrt{3}$,-3)B.(3$\sqrt{3}$,-3)C.(-3$\sqrt{3}$,3)D.(3$\sqrt{3}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系x0y中,以原点O为极点,x轴的正半轴为极轴,曲线C的极坐标方程为$ρ=\frac{sinθ}{{1-{{sin}^2}θ}}$.
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)过点P(0,2)作斜率为1的直线l与曲线C交于A,B两点,
①求线段AB的长;  
②$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\left\{\begin{array}{l}{-x-1,x<1}\\{{2}^{1-x},x≥1}\end{array}\right.$的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是(  )
A.a>1B.a≤-$\frac{3}{4}$C.a≥1或a<-$\frac{3}{4}$D.a>1或a≤-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某市国庆节7天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这7天的认购量与成交量作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.上述判断中错误的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,a2=$\frac{2}{3}$.
(1)若数列{an}满足2an-an+1=0,求an
(2)若a4=$\frac{4}{7}$,且数列{(2n-1)an+1}是等差数列,求数列{$\frac{n}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

同步练习册答案