| A. | a>1 | B. | a≤-$\frac{3}{4}$ | C. | a≥1或a<-$\frac{3}{4}$ | D. | a>1或a≤-$\frac{3}{4}$ |
分析 作出f(x)的图象和g(x)的图象,它们恰有一个交点,求出g(x)的恒过定点坐标,数形结合可得答案.
解答 解:函数f(x)=$\left\{\begin{array}{l}{-x-1,x<1}\\{{2}^{1-x},x≥1}\end{array}\right.$与函数g(x)的图象它们恰有一个交点,f(x)图象过点(1,1)和(1,-2),
而,g(x)的图象恒过定点坐标为(1-a,0).![]()
从图象不难看出:到g(x)过(1,1)和(1,-2),它们恰有一个交点,
当g(x)过(1,1)时,可得a=1,恒过定点坐标为(0,0),往左走图象只有一个交点.
当g(x)过(1,-2)时,可得a=$-\frac{3}{4}$,恒过定点坐标为($\frac{7}{4}$,0),往右走图象只有一个交点.
∴a>1或a≤-$\frac{3}{4}$.
故选:D.
点评 本题考查了分段函数画法和对数函数性质的运用.数形结合的思想.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ?a>2,x1-x2=0 | B. | ?a>2,x1-x2=1 | C. | ?a>2,|x1-x2|=2 | D. | ?a>2,|x1-x2|=3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $a≤{e}+\frac{1}{e}-2$ | B. | a<2 | C. | $\frac{2}{e}≤a<2$ | D. | $a≤\frac{2}{e}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
| 温差x(℃) | 10 | 11 | 13 | 12 | 8 |
| 发芽数y(颗) | 23 | 26 | 32 | 26 | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com