精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,焦距为2.
(1)求椭圆的标准方程;
(2)若直线l:y=kx+m(k,m∈R)与椭圆C相交于A,B两点,且kOA•kOB=-$\frac{3}{4}$.
①求证:△AOB的面积为定值;
②椭圆C上是否存在一点P,使得四边形OAPB为平行四边形?若存在,求出点P横坐标的取值范围;若不存在,说明理由.

分析 (1)根据椭圆的离心率公式及焦距,即可求得a和c的值,即可求得b的值,求得椭圆方程;
(2)①将直线方程,代入椭圆方程,根据韦达定理及直线的斜率公式,求得2m2-4k2=3.由弦长公式及点到直线的距离公式,求得丨AB丨及d,根据三角形的面积公式,化简即可求得△AOB的面积为定值;
②假设存在点P,得四边形OAPB为平行四边形,根据向量加法的平行四边形法则,即可求得P点坐标,代入椭圆方程,求得4m2=3+4k2,联立2m2-4k2=3.解得方程组无解,则不存在点P使OAPB为平行四边形.

解答 解:(1)由椭圆的离心率e=$\frac{c}{a}$=$\frac{1}{2}$,则a=2c,焦距2c=2,则c=1,
b2=a2-c2=3,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)①证明:设A(x1,y1),(x2,y2),则A,B的坐标满足$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,
整理得,(3+4k2)x2+8kmx+4m2-12=0.
∴x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$.
由△>0,得4k2-m2+3>0.
y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
=k2×$\frac{4{m}^{2}-12}{3+4{k}^{2}}$+km(-$\frac{8km}{3+4{k}^{2}}$)+m2
=$\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}$.
由kOA•kOB=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{3}{4}$.$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$,即y1y2=-$\frac{3}{4}$x1x2
∴$\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}$=-$\frac{3}{4}$×$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,即2m2-4k2=3.
∵丨AB丨=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$×$\sqrt{\frac{48(4{k}^{2}-{m}^{2}+3)}{(3+4{k}^{2})^{2}}}$=$\sqrt{\frac{24(1+{k}^{2})}{3+4{k}^{2}}}$.
O到直线y=kx+m的距离d=$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$,
∴S=$\frac{1}{2}$×d×丨AB丨=$\frac{1}{2}$×$\frac{丨m丨}{\sqrt{1+{k}^{2}}}$×$\sqrt{\frac{24(1+{k}^{2})}{3+4{k}^{2}}}$=$\frac{1}{2}$×$\sqrt{\frac{{m}^{2}}{1+{k}^{2}}×\frac{2(1+{k}^{2})}{3+4{k}^{2}}}$
=$\frac{1}{2}$×$\sqrt{\frac{3+4{k}^{2}}{2}×\frac{24}{3+4{k}^{2}}}$=$\sqrt{3}$.为定值.
∴△AOB的面积为定值;
②若存在平行四边形OAPB使P在椭圆上,则$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,设P(x0,y0),
则x0=x1+x2=-$\frac{8km}{3+4{k}^{2}}$,y0=y1+y2=$\frac{6m}{3+4{k}^{2}}$,
由于P在椭圆上,则$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$,从而化简得$\frac{16{k}^{2}{m}^{2}}{(3+4{k}^{2})^{2}}+\frac{12{m}^{2}}{(3+4{k}^{2})^{2}}=1$,即4m2=3+4k2
由kOA•kOB=-$\frac{3}{4}$,知2m2-4k2=3.
$\left\{\begin{array}{l}{4{m}^{2}=3+4{k}^{2}}\\{2{m}^{2}-4{k}^{2}=3}\end{array}\right.$,解得方程组无解,
故不存在点P使OAPB为平行四边形.

点评 本题考查椭圆方程的求法,考查直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,这是处理这类问题的最为常用的方法,考查了弦长公式及点到直线的距离公式,考查向量加法,考查计算能力,是高考试卷中的压轴题,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.掷一颗骰子一次,设事件A=“出现奇数点”,事件B=“出现3点或4点”,则事件A,B的关系是(  )
A.互斥但不相互独立B.相互独立但不互斥
C.互斥且相互独立D.既不相互独立也不互斥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\left\{\begin{array}{l}{-x-1,x<1}\\{{2}^{1-x},x≥1}\end{array}\right.$的图象与函数g(x)=log2(x+a)(a∈R)的图象恰有一个交点,则实数a的取值范围是(  )
A.a>1B.a≤-$\frac{3}{4}$C.a≥1或a<-$\frac{3}{4}$D.a>1或a≤-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某市国庆节7天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这7天的认购量与成交量作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.上述判断中错误的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={x|-1<x≤1},集合B={-1,1,3},则A∩B={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为$ρ=4sin(θ-\frac{π}{6})$.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设点为P(x,y)为直线l与圆C所截得的弦上的动点,求$\sqrt{3}x+y$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从0,1,2,3,4五个数字中随机取两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是$\frac{5}{8}$.(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,a2=$\frac{2}{3}$.
(1)若数列{an}满足2an-an+1=0,求an
(2)若a4=$\frac{4}{7}$,且数列{(2n-1)an+1}是等差数列,求数列{$\frac{n}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知矩阵A=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$,设曲线C:(x-y)2+y2=1在矩阵A对应的变换下得到曲线C′,求C′的方程.

查看答案和解析>>

同步练习册答案