精英家教网 > 高中数学 > 题目详情
4.从3名男同学和2名女同学中任选2名参加体能测试,则恰有1名男同学参加体能测试的概率为$\frac{3}{5}$.(结果用最简分数表示)

分析 先求出基本事件总数n=${C}_{5}^{2}$=10,再求出恰有1名男同学参加体能测试包含的基本事件的个数m=${C}_{2}^{1}{C}_{3}^{1}=6$,由此能求出恰有1名男同学参加体能测试的概率.

解答 解:从3名男同学和2名女同学中任选2名参加体能测试,
基本事件总数n=${C}_{5}^{2}$=10,
恰有1名男同学参加体能测试包含的基本事件的个数m=${C}_{2}^{1}{C}_{3}^{1}=6$,
∴恰有1名男同学参加体能测试的概率为p=$\frac{m}{n}=\frac{6}{10}=\frac{3}{5}$.
故答案为:$\frac{3}{5}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.某市国庆节7天假期的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这7天的认购量与成交量作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.上述判断中错误的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,a2=$\frac{2}{3}$.
(1)若数列{an}满足2an-an+1=0,求an
(2)若a4=$\frac{4}{7}$,且数列{(2n-1)an+1}是等差数列,求数列{$\frac{n}{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.公差为2的等差数列{an}的前n项和为Sn.若S3=12,则a3=(  )
A.4B.6C.8D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.秦九韶是我国南宋时代的数学家,其代表作《数书九章》是我国13世纪数学成就的代表之一;如图是秦九韶算法的一个程序框图,则输出的S为(  )
A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=2sinωx(0<ω<1)在区间$[{0,\frac{π}{3}}]$上的最大值为1,则ω=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知矩阵A=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$,设曲线C:(x-y)2+y2=1在矩阵A对应的变换下得到曲线C′,求C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知矩形ABCD中,AB=3,AD=4,沿矩形ABCD的对角线AC折起得三棱锥B-ACD,则三棱锥B-ACD的外接球半径R=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:1∈{x|x2-2x+1≤0},命题q:?x∈[0,1],x2-1≥0,则下列命题是真命题的是(  )
A.p∧qB.¬p∧(¬q)C.p∨qD.¬p∨q

查看答案和解析>>

同步练习册答案