精英家教网 > 高中数学 > 题目详情
2.已知命题p:1∈{x|x2-2x+1≤0},命题q:?x∈[0,1],x2-1≥0,则下列命题是真命题的是(  )
A.p∧qB.¬p∧(¬q)C.p∨qD.¬p∨q

分析 对于命题p:x2-2x+1≤0,解得x=1.即可判断出p的真假.对于命题q:?x∈[0,1],x2-1≥0-1=-1,即可判断出真假.

解答 解:对于命题p:x2-2x+1≤0,解得x=1.∴1∈{1},是真命题.
对于命题q:?x∈[0,1],x2-1≥0-1=-1,因此命题q是假命题.
∴只有p∨q是真命题.
故选:C.

点评 本题考查了函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.从3名男同学和2名女同学中任选2名参加体能测试,则恰有1名男同学参加体能测试的概率为$\frac{3}{5}$.(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.春天是鼻炎和感冒的高发期,某人在春季里鼻炎发作的概率为0.8,鼻炎发作且感冒的概率为0.6,则此人鼻炎发作的条件下,他感冒的概率为(  )
A.0.48B.0.40C.0.64D.0.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱AA1,B1C1,C1D1,DD1的中点,则下列直线中与直线EF相交的是(  )
A.直线CC1B.直线C1D1C.直线HC1D.直线GH

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在对人们的休闲方式的一次调查中,共调查 了100人,其中女性55人,男性45人.女性中有40人主要的休闲方式是看电视,另外15人主要的休闲方式是运动;男性中有20人主要休闲方式是看电视,另外25人主要休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表.
(2)是否有99%的把握认为性别与休闲方式有关系?${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
p(k2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a为实数,且函数f(x)=(x2-4)(x-a),f'(-1)=0.
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[-2,2]上的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个几何体的三视图如图所示,已知这个几何体的体积为$10\sqrt{3}$,则这个几何体的外接球的表面积为(  )
A.B.24πC.48πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若数列{an}和{bn}的项数均为n,则将$\sum_{i=1}^n{|{a_i}-{b_i}|}$定义为数列{an}和{bn}的距离.
(1)已知${a_n}={2^n}$,bn=2n+1,n∈N*,求数列{an}和{bn}的距离dn
(2)记A为满足递推关系${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}$的所有数列{an}的集合,数列{bn}和{cn}为A中的两个元素,且项数均为n.若b1=2,c1=3,数列{bn}和{cn}的距离大于2017,求n的最小值.
(3)若存在常数M>0,对任意的n∈N*,恒有$\sum_{i=1}^n{|{a_i}-{b_i}|}≤M$则称数列{an}和{bn}的距离是有界的.若{an}与{an+1}的距离是有界的,求证:$\{a_n^2\}$与$\{a_{n+1}^2\}$的距离是有界的.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设公差不为0的等差数列{an}的前n项和为Sn,若a2,a5,a11成等比数列,且a11=2(Sm-Sn)(m>n>0,m,n∈N*),则m+n的值是9.

查看答案和解析>>

同步练习册答案