精英家教网 > 高中数学 > 题目详情
1.已知矩形ABCD中,AB=3,AD=4,沿矩形ABCD的对角线AC折起得三棱锥B-ACD,则三棱锥B-ACD的外接球半径R=$\frac{5}{2}$.

分析 先确定球心的位置为对角线AC的中点,然后求出球的半径,

解答 解:由题意知,球心到四个顶点的距离相等,∵Rt△ABC,Rt△ADC有公共斜边AC,
则球心为对角线AC的中点,且其半径为AC长度的一半$\frac{1}{2}\sqrt{{3}^{2}+{4}^{2}}=\frac{5}{2}$.
故答案为:$\frac{5}{2}$.

点评 本题考查球的内接多面体,外接球的半径与折叠二面角的大小没有关系,是解题的关键,考查学生发现问题解决问题的能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,圆C的参数方程$\left\{\begin{array}{l}x=1+cosϕ\\ y=sinϕ\end{array}$(ϕ为参数).以O为极点,x轴的非负半轴为极轴建立坐标系.
(1)求圆C的极坐标方程;
(2)设直线l的极坐标方程是$2ρsin(θ+\frac{π}{3})=3\sqrt{3}$,射线$\sqrt{3}$x-y=0(x≥0)与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从3名男同学和2名女同学中任选2名参加体能测试,则恰有1名男同学参加体能测试的概率为$\frac{3}{5}$.(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知(x-1)(ax+1)6展开式中含x2项的系数为0,则正实数a=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.总体由编号为01,02,…,29,30的30个个体组成.利用下面的随机数表选取4个个体.选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为29
7806 6572 0802 6314 2947 1821 9800
3204 9234 4935 3623 4869 6938 7481

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在直三棱柱ABC-A1B1C1中,AB=AC=2,∠BAC=$\frac{π}{3}$,BB1-=3,则侧棱BB1所在直线与平面AB1C1所成的角为(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.春天是鼻炎和感冒的高发期,某人在春季里鼻炎发作的概率为0.8,鼻炎发作且感冒的概率为0.6,则此人鼻炎发作的条件下,他感冒的概率为(  )
A.0.48B.0.40C.0.64D.0.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱AA1,B1C1,C1D1,DD1的中点,则下列直线中与直线EF相交的是(  )
A.直线CC1B.直线C1D1C.直线HC1D.直线GH

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若数列{an}和{bn}的项数均为n,则将$\sum_{i=1}^n{|{a_i}-{b_i}|}$定义为数列{an}和{bn}的距离.
(1)已知${a_n}={2^n}$,bn=2n+1,n∈N*,求数列{an}和{bn}的距离dn
(2)记A为满足递推关系${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}$的所有数列{an}的集合,数列{bn}和{cn}为A中的两个元素,且项数均为n.若b1=2,c1=3,数列{bn}和{cn}的距离大于2017,求n的最小值.
(3)若存在常数M>0,对任意的n∈N*,恒有$\sum_{i=1}^n{|{a_i}-{b_i}|}≤M$则称数列{an}和{bn}的距离是有界的.若{an}与{an+1}的距离是有界的,求证:$\{a_n^2\}$与$\{a_{n+1}^2\}$的距离是有界的.

查看答案和解析>>

同步练习册答案