16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$ £¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{4}{1+si{n}^{2}¦È}$£¬ÇÒÖ±Ïßl¾­¹ýµãF£¨-$\sqrt{2}$£¬0£©
£¨ I £©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÉèÇúÏßCµÄÄÚ½Ó¾ØÐεÄÖܳ¤ÎªL£¬ÇóLµÄ×î´óÖµ£®

·ÖÎö £¨ I £©ÀûÓæÑ2=x2+y2£¬¦Ñsin¦È=y£¬½«ÇúÏßCת»¯³ÉÖ±½Ç×ø±ê·½³Ì£»ÔòÖ±ÏßlµÄÆÕͨ·½³Ìx-y=m£¬½«F´úÈëÖ±Ïß·½³Ì£¬¼´¿ÉÇóµÃm£¬ÇóµÃÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÓÉ£¨ I £©¿ÉÖª£ºÉèÍÖÔ²CµÄÄÚ½Ó¾ØÐÎÔÚµÚÒ»ÏóÏ޵Ķ¥µã£¨2cos¦È£¬$\sqrt{2}$sin¦È£©£¬ÔòL=2£¨4cos¦È+2$\sqrt{2}$sin¦È£©=4$\sqrt{6}$sin£¨¦È+¦Õ£©£¬¸ù¾ÝÕýÏÒº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÇóµÃLµÄ×î´óÖµ£®

½â´ð ½â£º£¨ I £©ÓÉÇúÏßCµÄ¼«×ø±ê·½³Ì£º¦Ñ2=$\frac{4}{1+si{n}^{2}¦È}$£¬¼´¦Ñ2+¦Ñ2sin2¦È=4£¬
½«¦Ñ2=x2+y2£¬¦Ñsin¦È=y£¬´úÈëÉÏʽ£¬»¯¼òÕûÀíµÃ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»
Ö±ÏßlµÄÆÕͨ·½³ÌΪx-y=m£¬½«F´úÈëÖ±Ïß·½³Ì£¬Ôòm=$\sqrt{2}$£¬
¡àÖ±ÏßlµÄÆÕͨ·½³ÌΪx-y+$\sqrt{2}$=0£»
£¨¢ò£©ÉèÍÖÔ²CµÄÄÚ½Ó¾ØÐÎÔÚµÚÒ»ÏóÏ޵Ķ¥µã£¨2cos¦È£¬$\sqrt{2}$sin¦È£©£¬£¨0£¼¦È£¼$\frac{¦Ð}{2}$£©£¬
¡àÍÖÔ²CµÄÄÚ½Ó¾ØÐεÄÖܳ¤L=2£¨4cos¦È+2$\sqrt{2}$sin¦È£©=4$\sqrt{6}$sin£¨¦È+¦Õ£©£¬tan¦Õ=$\sqrt{2}$£¬
¡àÇúÏßCµÄÄÚ½Ó¾ØÐεÄÖܳ¤ÎªLµÄ×îֵΪ4$\sqrt{6}$£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬ÍÖÔ²µÄ¼«×ø±ê·½³Ì¼°²ÎÊý·½³ÌµÄÓ¦Ó㬿¼²é¸¨Öú½Ç¹«Ê½µÄÓ¦Óã¬ÕýÏÒº¯ÊýµÄ×îÖµ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ö±Ïß$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÔ²$\left\{\begin{array}{l}{x=4+2cos¦Õ}\\{y=2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©ÏàÇУ¬Ôò´ËÖ±ÏßµÄÇãб½Ç¦Á£¨¦Á£¾$\frac{¦Ð}{2}$£©µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{5¦Ð}{6}$B£®$\frac{3¦Ð}{4}$C£®$\frac{2¦Ð}{3}$D£®$\frac{¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÔÚ¡÷ABCÖУ¬$AB=2£¬AC=4£¬¡ÏBAC=\frac{2¦Ð}{3}$£¬ADΪBC±ßÉϵÄÖÐÏߣ¬ÔòAD=$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬½«º¯Êýy=sin2xµÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»µÃµ½º¯Êýg£¨x£©µÄͼÏó£¬Ôòg£¨$\frac{¦Ð}{12}$£©µÄֵΪ$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=4sin£¨¦È-\frac{¦Ð}{6}£©$£®
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèµãΪP£¨x£¬y£©ÎªÖ±ÏßlÓëÔ²CËù½ØµÃµÄÏÒÉϵ͝µã£¬Çó$\sqrt{3}x+y$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³ÊжԴ´¡°Êм¶Ê¾·¶ÐÔѧУ¡±µÄ¼×¡¢ÒÒÁ½ËùѧУ½øÐи´²éÑéÊÕ£¬¶Ô°ìѧµÄÉç»áÂúÒâ¶ÈÒ»ÏîÆÀ¼ÛËæ»ú·ÃÎÊÁË20λÊÐÃñ£¬Õâ20λÊÐÃñ¶ÔÕâÁ½ËùѧУµÄÆÀ·Ö£¨ÆÀ·ÖÔ½¸ß±íÃ÷ÊÐÃñµÄÆÀ¼ÛÔ½ºÃ£©µÄÊý¾ÝÈçÏ£º
¼×У£º58£¬66£¬71£¬58£¬67£¬72£¬82£¬92£¬83£¬86£¬67£¬59£¬86£¬72£¬78£¬59£¬68£¬69£¬73£¬81£»
ÒÒУ£º90£¬80£¬73£¬65£¬67£¬69£¬81£¬85£¬82£¬88£¬89£¬86£¬86£¬78£¬98£¬95£¬96£¬91£¬76£¬69£¬£®
¼ì²é×齫³É¼¨·Ö³ÉÁËËĸöµÈ¼¶£º³É¼¨ÔÚÇø¼ä[85£¬100]µÄΪAµÈ£¬ÔÚÇø¼ä[70£¬85£©µÄΪBµÈ£¬ÔÚÇø¼ä[60£¬70£©µÄΪCµÈ£¬ÔÚÇø¼ä[0£¬60£©ÎªDµÈ£®
£¨1£©ÇëÓþ¥Ò¶Í¼±íʾÉÏÃæµÄÊý¾Ý£¬²¢Í¨¹ý¹Û²ì¾¥Ò¶Í¼£¬¶ÔÁ½ËùѧУ°ìѧµÄÉç»áÂúÒâ¶È½øÐбȽϣ¬Ð´³öÁ½¸öͳ¼Æ½áÂÛ£»
£¨2£©¸ù¾ÝËù¸øÊý¾Ý£¬ÒÔʼþ·¢ÉúµÄƵÂÊ×÷ΪÏàӦʼþ·¢ÉúµÄ¸ÅÂÊ£¬ÇóÒÒУµÃ·ÖµÄµÈ¼¶¸ßÓÚ¼×УµÃ·ÖµÄµÈ¼¶µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=x2+ax-lnx£¨a¡ÊR£¬aΪ³£Êý£©
£¨1£©µ±a=-1ʱ£¬Èô·½³Ìf£¨x£©=$\frac{b}{x}$ÓÐʵ¸ù£¬ÇóbµÄ×îСֵ£»
£¨2£©ÉèF£¨x£©=f£¨x£©•e-x£¬ÈôF£¨x£©ÔÚÇø¼ä£¨0£¬1]ÉÏÊǵ¥µ÷º¯Êý£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+cos¦Á}\\{y=sin¦Á}\end{array}}\right.$£¨¦ÁΪ²ÎÊý£¬¦Á¡Ê[0£¬¦Ð]£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\frac{4}{{\sqrt{2}sin£¨{¦È-\frac{¦Ð}{4}}£©}}$£®
£¨1£©Ð´³öÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©PΪÇúÏßCÉÏÈÎÒâÒ»µã£¬QΪֱÏßlÈÎÒâÒ»µã£¬Çó|PQ|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+cos¦È\\ y=sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨¢ñ£©ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÈôÇúÏßCÏò×óÆ½ÒÆÒ»¸öµ¥Î»£¬ÔÙ¾­¹ýÉìËõ±ä»»$\left\{{\begin{array}{l}{x'=2x}\\{y'=y}\end{array}}\right.$µÃµ½ÇúÏßC'£¬ÉèM£¨x£¬y£©ÎªÇúÏßC'ÉÏÈÎÒ»µã£¬Çó$\frac{x^2}{4}-\sqrt{3}xy-{y^2}$µÄ×îСֵ£¬²¢ÇóÏàÓ¦µãMµÄÖ±½Ç×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸