精英家教网 > 高中数学 > 题目详情
7.在△ABC中,$AB=2,AC=4,∠BAC=\frac{2π}{3}$,AD为BC边上的中线,则AD=$\sqrt{3}$.

分析 利用余弦定理求出BC,通过正弦定理求出B的正弦函数与余弦函数值,然后利用余弦定理求解AD即可.

解答 解:在△ABC中,$AB=2,AC=4,∠BAC=\frac{2π}{3}$,
可得BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•ACcos∠BAC}$=$\sqrt{4+16+2×2×4×\frac{1}{2}}$=2$\sqrt{7}$.BD=$\sqrt{7}$.
由正弦定理可得sinB=$\frac{4×\frac{\sqrt{3}}{2}}{2\sqrt{7}}$=$\frac{\sqrt{3}}{\sqrt{7}}$,cosB=$\sqrt{1-\frac{3}{7}}$=$\frac{2}{\sqrt{7}}$,
在△ADB中AD=$\sqrt{A{B}^{2}+B{D}^{2}-2AB•BDcosB}$=$\sqrt{4+7-2×2×\sqrt{7}×\frac{2}{7}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查三角形的解法,余弦定理以及正弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设a1、a2∈R,且$\frac{1}{2+sin{α}_{1}}$+$\frac{1}{2+sin(2{α}_{2})}$=2,则|10π-α12|的最小值等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.曲线C1:ρsinθ-2=0,曲线C2:ρ-4cosθ=0,则曲线C1、C2的位置关系是(  )
A.相交B.相切C.重合D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在[0,a](a>0)上随机抽取一个实数x,若x满足$\frac{x-2}{x+1}$<0的概率为$\frac{1}{2}$,则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.f(x)=alnx+x2-b(x-1)-1,若对$?x∈[\frac{1}{e},+∞)$,f(x)≥0恒成立,则实数a的取值范围是(  )
A.$a≤{e}+\frac{1}{e}-2$B.a<2C.$\frac{2}{e}≤a<2$D.$a≤\frac{2}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\frac{{ln({2x})}}{x}$,关于x的不等式f2(x)+af(x)>0只有两个整数解,则实数a的取值范围为(-ln2,-$\frac{ln6}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=axlnx+b在点(1,f(1))处的切线方程为y=x-1,g(x)=λ(x-1)(其中λ为常数).
(1)求函数f(x)的解析式;
(2)若对任意x∈[1,+∞),不等式f(x)≥g(x)恒成立,求实数λ的取值范围;
(3)当x>1时,求证:[f(x-1)-(x-3)][f(ex)-3(ex-3)]≥9-e2(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$ (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{4}{1+si{n}^{2}θ}$,且直线l经过点F(-$\sqrt{2}$,0)
( I )求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-kx+k.
(Ⅰ)若f(x)≥0有唯一解,求实数k的值;
(Ⅱ)证明:当a≤1时,x(f(x)+kx-k)<ex-ax2-1.
(附:ln2≈0.69,ln3≈1.10,${e^{\frac{3}{2}}}≈4.48$,e2≈7.39)

查看答案和解析>>

同步练习册答案