精英家教网 > 高中数学 > 题目详情
17.在三角形中有如下性质:①任意两边之和大于第三边;②中位线长等于底边长的一半;③若内切圆半径为r,周长为l,则面积S=$\frac{1}{2}$lr; ④三角形都有外接圆.
将其类比到空间则有:四面体中,①任意三个面的面积之和大于第四个面的面积;②过同一顶点的三条棱中点的截面面积是第四个面面积的$\frac{1}{4}$;③若内切球半径为R,表面积为s,则体积V=$\frac{1}{3}$sR.④四面体都有外接球.其中正确的类比结果是(  )
A.①②B.①②③C.①②④D.①②③④

分析 由二维到三维的类比推理要注意点的性质往往推广为线的性质,线的性质往往推广为面的性质.

解答 解:将其类比到空间则有:四面体中,
①在四面体ABCD中,设点A在底面上的射影为O,则三个侧面的面积都大于在底面上的投影的面积,故三个侧面的面积之和一定大于底面的面积,所以任意三个面的面积之和大于第四个面的面积,正确;
②由平面几何中线的性质,类比推理空间几何中面的性质,可得过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的$\frac{1}{4}$,正确;
③利用分割法,若内切球半径为R,表面积为s,则体积V=$\frac{1}{3}$sR,正确;
④四面体都有外接球,正确.
故选:D.

点评 本题考查类比推理,体现了数形结合的数学思想,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.“指数函数y=ax(a>1)是增函数,y=xα(α>1)是指数函数,所以y=xα(α>1)是增函数”,在以上演绎推理中,下列说法正确的是(  )
A.推理完全正确B.大前提不正确C.小前提不正确D.推理形式不正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若关于x的方程x2+ax-4≥0在区间[2,4]上恒成立,则实数a的取值范围是[0,+∞)_.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+(x-1)|x-a|.
(1)若函数f(x)在R上单调递增,求实数a的取值范围;
(2)若a<1且不等式f(x)≥2x-3对一切实数x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知m>$\frac{1}{2}$,n>1,则$\frac{{n}^{2}}{2m-1}$+$\frac{4{m}^{2}}{n-1}$的最小值为(  )
A.4B.7.5C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\sqrt{2}$sinωx(ω>0)相邻两个最值点的横坐标之差的绝对值为$\frac{π}{2}$,其图象上所有点向左平移$\frac{π}{8}$个单位得到g(x)的图象,若x∈(0,$\frac{π}{4}$).则g(x)的值域为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某房地产开发商为吸引更多的消费者购房,决定在一块闲置的扇形空地中修建一个花园,如图,已知扇形AOB的圆心角∠AOB=$\frac{π}{4}$,半径为R,现欲修建的花园为平行四边形OMNH,其中M,H分别在OA,OB上,N在AB上,设∠MON=θ,平行四边形OMNH的面积为S.
1)将S表示为关于θ的函数;
(2)求S的最大值及相应的θ值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.y=sin(ωx+$\frac{π}{6}$)(ω>0)在区间[-$\frac{3π}{4}$,$\frac{π}{2}$]上不单调,则ω的取值范围(  )
A.(0,$\frac{2}{3}$)B.($\frac{2}{3}$,+∞)C.(0,$\frac{2}{3}$]D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设△ABC的内角A、B、C的对边分别是a,b,c,已知A=$\frac{π}{6}$,a=bcosC,则角C的大小是$\frac{π}{3}$(弧度)

查看答案和解析>>

同步练习册答案