| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
分析 利用三角函数的倍角公式将条件进行化简,结合正弦定理以及充分条件和必要条件的定义进行判断即可.
解答 解:由cos2($\frac{A}{2}$+$\frac{π}{4}$)<cos2($\frac{B}{2}$+$\frac{π}{4}$)得$\frac{1+cos(A+\frac{π}{2})}{2}<\frac{1+cos(B+\frac{π}{2})}{2}$,
即-sinA<-sinB,即sinA>sinB,
在三角形中,若A>B,则a>b,则由正弦定理得sinA>sinB,
反之也成立,
故,“A>B”是“cos2($\frac{A}{2}$+$\frac{π}{4}$)<cos2($\frac{B}{2}$+$\frac{π}{4}$)”的充要条件,
故选:C.
点评 本题主要考查三角函数的化简以及充分条件和必要条件的判断,利用正弦定理是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{6}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com