精英家教网 > 高中数学 > 题目详情
14.求函数y=$\frac{cox+1}{cosx-1}$的定义域{x|x≠2kπ,k∈Z},值域{y|y≤0}.

分析 由题意可得cosx≠1,易得函数的定义域,变形可得y=1+$\frac{2}{cosx-1}$,由cosx的范围结合不等式的性质可得值域.

解答 解:由cosx-1≠0可得cosx≠1,
∴x≠2kπ,k∈Z,
∴函数的定义域为{x|x≠2kπ,k∈Z},
又y=$\frac{cox+1}{cosx-1}$=$\frac{cosx-1+2}{cosx-1}$=1+$\frac{2}{cosx-1}$,
∵-1≤cosx<1,∴-2≤cosx-1<0,
∴$\frac{2}{cosx-1}$≤-1,∴1+$\frac{2}{cosx-1}$≤0,
∴函数的值域为{y|y≤0}
故答案为:{x|x≠2kπ,k∈Z};{y|y≤0}

点评 本题考查三角函数的最值,涉及三角函数的定义域和值域,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,“A>B”是“cos2($\frac{A}{2}$+$\frac{π}{4}$)<cos2($\frac{B}{2}$+$\frac{π}{4}$)”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线y=$\sqrt{1-{x}^{2}}$+1上存在不同的两点关于直线l对称,则直线l的方程可以是(  )
A.y=-3x+4B.y=xC.y=-x+2D.y=x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在边长为2的正方形ABCD中,E,F分别为BC和DC的中点,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=(  )
A.$\frac{5}{2}$B.$\frac{3}{2}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=1前n项和Sn=$\frac{3}{2}$n2-$\frac{1}{2}$n.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设bn=2${\;}^{{a}_{n}}$,求证:b1+b2+…+bn>$\frac{2}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中既是轴对称又是增函数的是(  )
A.y=-$\frac{2}{x}$B.y=2xC.y=log2xD.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数x,y满足x2+x+y2+y=0,则x+y的范围是[-2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x、y满足约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,则目标函数z=2x+3y的最大值为(  )
A.11B.10C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ y≤4\end{array}\right.$,则目标函数z=x-2y的最小值是(  )
A.0B.-6C.-8D.-12

查看答案和解析>>

同步练习册答案