分析 将圆x2+x+y2+y=0,化为参数方程,进而根据正弦型函数的图象和性质,可得x+y的范围.
解答 解:∵实数x,y满足x2+x+y2+y=0,
∴(x+$\frac{1}{2}$)2+(y+$\frac{1}{2}$)2=$\frac{1}{2}$,
即2(x+$\frac{1}{2}$)2+2(y+$\frac{1}{2}$)2=1,
令$\sqrt{2}$(x+$\frac{1}{2}$)=cosθ,$\sqrt{2}$(y+$\frac{1}{2}$)=sinθ,
∴x=$\frac{\sqrt{2}}{2}cosθ-\frac{1}{2}$,y=$\frac{\sqrt{2}}{2}sinθ-\frac{1}{2}$,
x+y=$\frac{\sqrt{2}}{2}cosθ+\frac{\sqrt{2}}{2}sinθ-1$=sin($θ+\frac{π}{4}$)-1∈[-2,0],
故x+y的范围是[-2,0],
故答案为:[-2,0]
点评 本题考查的知识点是圆的方程,其中将一般方程化为参数方程,进而转化求三角函数的最值,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 任意的x∈R,都有x2≤0成立 | B. | 任意的x∈R,都有x2<0成立 | ||
| C. | 存在x0∈R,使得x${\;}_{0}^{2}$≤0成立 | D. | 存在x0∈R,使得x${\;}_{0}^{2}$<0成立 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com