精英家教网 > 高中数学 > 题目详情
3.设变量x、y满足约束条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,则目标函数z=2x+3y的最大值为(  )
A.11B.10C.9D.12

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式对应的平面区域(阴影部分),
由z=2x+3y,得y=$-\frac{2}{3}x+\frac{z}{3}$,
平移直线y=$-\frac{2}{3}x+\frac{z}{3}$,由图象可知当直线y=$-\frac{2}{3}x+\frac{z}{3}$经过点A时,直线y=$-\frac{2}{3}x+\frac{z}{3}$的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x=0}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=4}\end{array}\right.$,
即A(0,4).
此时z的最大值为z=3×4=12,
故选:D.

点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.阅读如图的程序框图,当该程序运行后输出的x值是16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.求函数y=$\frac{cox+1}{cosx-1}$的定义域{x|x≠2kπ,k∈Z},值域{y|y≤0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.我们把函数y=f(x)图象上的点到坐标原点距离的最小值叫做函数y=f(x)的“中心距离”,已知函数g(x)=x+$\frac{a}{x}$(a>0)的“中心距离”不小于$\sqrt{2}$,则实数a的取值范围为[$\sqrt{2}$-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,c是实数,则“a,b,c成等比数列”是“b2=ac”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示的程序框图的功能是(  )
A.求数列{$\frac{1}{n}$}的前10项的和B.求数列{$\frac{1}{n}$}的前11项的和
C.求数列{$\frac{1}{2n}$}的前10项的和D.求数列{$\frac{1}{2n}$}的前11项的和

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若i是虚数单位,则复数$\frac{(1+i)^{2}}{i}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若过点$P({-2\sqrt{3},-2})$的直线与圆x2+y2=4有公共点,则该直线的倾斜角的取值范围是(  )
A.$({0,\frac{π}{6}})$B.$[{0,\frac{π}{3}}]$C.$[{0,\frac{π}{6}}]$D.$({0,\frac{π}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,设抛物线C:y2=2px(p>0)的焦点为F,过点F的直线l1交抛物线C于A,B两点,且|AB|=8,线段AB的中点到y轴的距离为3.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线l2与圆x2+y2=$\frac{1}{2}$切于点P,与抛物线C切于点Q,求△FPQ的面积.

查看答案和解析>>

同步练习册答案