| A. | $({0,\frac{π}{6}})$ | B. | $[{0,\frac{π}{3}}]$ | C. | $[{0,\frac{π}{6}}]$ | D. | $({0,\frac{π}{3}}]$ |
分析 当过点$P({-2\sqrt{3},-2})$的直线与圆x2+y2=4相切时,设斜率为k,由圆心到直线的距离等于半径求得k的范围,即可求得该直线的倾斜角的取值范围.
解答 解:当过点$P({-2\sqrt{3},-2})$的直线与圆x2+y2=4相切时,设斜率为k,
则此直线方程为y+2=k(x+2$\sqrt{3}$),即 kx-y+2$\sqrt{3}$k-2=0.
由圆心到直线的距离等于半径可得$\frac{|2\sqrt{3}k-2|}{\sqrt{{k}^{2}+1}}$=2,求得k=0或 k=$\sqrt{3}$,
故直线的倾斜角的取值范围是[0,$\frac{π}{3}$],
故选:B.
点评 本题主要考查直线和圆相切的性质,点到直线的距离公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{3}{2}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 10 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -6 | C. | -8 | D. | -12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α∥β,l?α,n?β⇒l∥n?????? | B. | l⊥n,m⊥n⇒l∥m | ||
| C. | l⊥α,l∥β⇒α⊥β | D. | α⊥β,l?α⇒l⊥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com