精英家教网 > 高中数学 > 题目详情
19.圆C:x2+y2+2x+2y+1=0被直线l:x+y+1=0截得的劣弧长为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 求出圆心(-1,-1)到直线l:x+y+1=0的距离为d的值,设弦长对的圆心角为2θ,则由cosθ=$\frac{d}{r}$的值,可得θ的值,从而求得2θ的值,今儿求得弦对的弧长.

解答 解:圆C:x2+y2+2x+2y+1=0,即(x+1)2+(y+1)2 =1,
它的圆心(-1,-1)到直线l:x+y+1=0的距离为d=$\frac{|-1-1+1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
设弦长对的圆心角为2θ,则由cosθ=$\frac{d}{r}$=$\frac{\sqrt{2}}{2}$,可得θ=$\frac{π}{4}$,2θ=$\frac{π}{2}$,
故弧长等于圆周长的$\frac{1}{4}$,即$\frac{1}{4}$×2π×1=$\frac{π}{2}$,
故选:C.

点评 本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,直角三角形中的边角关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知二次函数y=f(x)的图象的顶点坐标为(-1,-$\frac{1}{3}$),且过坐标原点O.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)在二次函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=anan+1cos(n+1)π,(n∈N*),数列{bn}的前n项和为Tn,若Tn≥tn2对n∈N*恒成立,求实数t的取值范围;
(Ⅲ)在数列{an}中是否存在这样一些项:an1,an2,an3,…,ank,…(1=n1<n2<n3<…<nk<…,k∈N*),这些项都能够构成以a1为首项,q(0<q<5,q∈N*)为公比的等比数列{ank},k∈N*?若存在,写出nk关于k的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=1,an+1=an+$\frac{1}{n(n+1)}$+1.
(Ⅰ)证明数列{an+$\frac{1}{n}$}是等差数列,并求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{n+1}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若幂函数f(x)的图象经过点(3,$\frac{\sqrt{3}}{3}$),则函数g(x)=$\sqrt{x}$+f(x)在[$\frac{1}{2}$,3]上的值域为(  )
A.[2,$\frac{4\sqrt{3}}{3}$]B.[2,$\frac{3\sqrt{2}}{2}$]C.(0,$\frac{4\sqrt{3}}{3}$]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的表面积是(  )
A.12+4$\sqrt{6}$B.17C.12+2$\sqrt{6}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,“A>B”是“cos2($\frac{A}{2}$+$\frac{π}{4}$)<cos2($\frac{B}{2}$+$\frac{π}{4}$)”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从区间(0,2)内随机取两个数x,y,则使$\frac{y}{x}$≥4的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}+\frac{1}{{b}_{2}{b}_{3}}+…+\frac{1}{{b}_{9}{b}_{10}}$=(  )
A.$\frac{1}{11}$B.$\frac{9}{10}$C.$\frac{10}{11}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}中,a1=1前n项和Sn=$\frac{3}{2}$n2-$\frac{1}{2}$n.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设bn=2${\;}^{{a}_{n}}$,求证:b1+b2+…+bn>$\frac{2}{7}$.

查看答案和解析>>

同步练习册答案