分析 利用组合数的计算公式可得${∁}_{k-1}^{n}$=$\frac{(k-1)!}{n!(k-1-n)!}$,${∁}_{k}^{n}$=$\frac{k!}{n!(k-n)!}$,${∁}_{k+1}^{n}$=$\frac{(k+1)!}{n!(k+1-n)!}$,利用C${\;}_{k-1}^{n}$:C${\;}_{k}^{n}$:C${\;}_{k+1}^{n}$=1:2:3,化简整理即可得出.
解答 解:∵${∁}_{k-1}^{n}$=$\frac{(k-1)!}{n!(k-1-n)!}$,${∁}_{k}^{n}$=$\frac{k!}{n!(k-n)!}$,${∁}_{k+1}^{n}$=$\frac{(k+1)!}{n!(k+1-n)!}$,
又C${\;}_{k-1}^{n}$:C${\;}_{k}^{n}$:C${\;}_{k+1}^{n}$=1:2:3,
∴$\frac{1}{1}$:$\frac{k}{k-n}$:$\frac{(k+1)k}{(k+1-n)(k-n)}$=1:2:3,
化为k=2n=3n-1,
解得n=1,k=2.
∴n+k=3.
故答案为:3.
点评 本题考查了组合数的计算公式,考查了计算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 11 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{15}{4}$ | C. | $\frac{17}{4}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b≥4 | B. | a≥4>b | C. | a<b≤4 | D. | a≤4<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com