µÈ¼¶²úÆ·Ò»µÈ¶þµÈ¼×5£¨ÍòÔª£©2.5£¨ÍòÔª£©ÒÒ2.5£¨ÍòÔª£©1.5£¨ÍòÔª£©ÀûÈóÏîÄ¿²úÆ·¹¤ÈË£¨Ãû£©×ʽð£¨ÍòÔª£©¼×88ÒÒ210ÓÃÁ¿¹¤Ðò²úÆ·µÚÒ»¹¤ÐòµÚ¶þ¹¤Ðò¼×0.80.85ÒÒ0.750.8¸ÅÂÊij¹¤³§Éú²ú¼×¡¢ÒÒÁ½ÖÖ²úÆ·£¬Ã¿ÖÖ²úÆ·¶¼ÊǾ­¹ýµÚÒ»ºÍµÚ¶þ¹¤Ðò¼Ó¹¤¶ø³É£¬Á½µÀ¹¤ÐòµÄ¼Ó¹¤½á¹ûÏ໥¶ÀÁ¢£¬Ã¿µÀ¹¤ÐòµÄ¼Ó¹¤½á¹û¾ùÓÐA¡¢BÁ½¸öµÈ¼¶£®¶ÔÿÖÖ²úÆ·£¬Á½µÀ¹¤ÐòµÄ¼Ó¹¤½á¹û¶¼ÎªA¼¶Ê±£¬²úƷΪһµÈÆ·£¬ÆäÓà¾ùΪ¶þµÈÆ·£®
£¨1£©ÒÑÖª¼×¡¢ÒÒÁ½ÖÖ²úƷÿһµÀ¹¤ÐòµÄ¼Ó¹¤½á¹ûΪA¼¶µÄ¸ÅÂÊÈç±íÒ»Ëùʾ£¬·Ö±ðÇóÉú²ú³öµÄ¼×¡¢ÒÒ²úƷΪһµÈÆ·µÄ¸ÅÂÊP¼×¡¢PÒÒ£»
£¨2£©ÒÑÖªÒ»¼þ²úÆ·µÄÀûÈóÈç±í¶þËùʾ£¬ÓæΡ¢¦Ç·Ö±ð±íʾһ¼þ¼×¡¢ÒÒ²úÆ·µÄÀûÈó£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬Çó¦Î¡¢¦ÇµÄ·Ö²¼Áм°E¦Î¡¢E¦Ç£»
£¨3£©ÒÑÖªÉú²úÒ»¼þ²úÆ·ÐèÓõŤÈËÊýºÍ×ʽð¶îÈç±íÈýËùʾ£®¸Ã¹¤³§Óй¤ÈË40Ãû£¬¿ÉÓÃ×Ê£®½ð60ÍòÔª£®Éèx¡¢y·Ö±ð±íʾÉú²ú¼×¡¢ÒÒ²úÆ·µÄÊýÁ¿£¬ÔÚ£¨II£©µÄÌõ¼þÏ£¬x¡¢yΪºÎֵʱ£¬Z=xE¦Î+yE¦Ç×î´ó£¿×î´óÖµÊǶàÉÙ£¿£¨½â´ðʱÐë¸ø³öͼʾ£©
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿¼°Æä·Ö²¼ÁÐ
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©ÓÉÌâÒâÀûÓÃÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʳ˷¨¹«Ê½ÄÜÇó³ö¼×¡¢ÒÒ²úƷΪһµÈÆ·µÄ¸ÅÂÊ£®
£¨2£©ÏÈÇó³öËæ»ú±äÁ¿¦ÎºÍ¦ÇµÄ·Ö²¼ÁУ¬ÓÉ´ËÄÜÇó³ö¦Î¡¢¦ÇµÄ·Ö²¼Áм°E¦Î¡¢E¦Ç£®
£¨3£©ÓÉÌâÉèÖª
8x+10y¡Ü60
8x+2y¡Ü40
x¡Ý0
y¡Ý0
£¬Ä¿±êº¯ÊýΪz=xE¦Î+yE¦Ç=4.2x+2.1y£¬×÷³ö¿ÉÐÐÓò£¬ÓÉ´ËÄÜÇó³öx=4£¬y=4ʱ»òx=5£¬y=0ʱ£¬zÈ¡×î´óÖµ£¬zµÄ×î´óֵΪ21£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÒâµÃ£ºP¼×=0.8¡Á0.85=0.68£¬
PÒÒ=0.75¡Á0.8=0.6¡­£¨2·Ö£©
£¨2£©Ëæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁÐÊÇ£º
 ¦Î5 2.5
 P 0.68 0.32
Ëæ»ú±äÁ¿¦ÇµÄ·Ö²¼ÁÐÊÇ£º
 ¦Ç 2.5 1.5
 P 0.6 0.4
E¦Î=5¡Á0.68+2.5¡Á0.32=4.2£¬
E¦Ç=2.5¡Á0.6+1.5¡Á0.4=2.1£®
£¨3£©ÓÉÌâÉèÖª
8x+10y¡Ü60
8x+2y¡Ü40
x¡Ý0
y¡Ý0
£¬
Ä¿±êº¯ÊýΪz=xE¦Î+yE¦Ç=4.2x+2.1y£¬
×÷³ö¿ÉÐÐÓò£¨Èçͼ£©£º
×÷Ö±Ïßl£º4.2x+2.1y=0£¬
½«lÏòÓÒÉÏ·½Æ½ÒÆÖÁl1λÖÃʱ£¬Ö±Ïß¾­¹ý¿ÉÐÐÓòÉϵĵãMµãÓëÔ­µã¾àÀë×î´ó£¬
´Ëʱz=4.2x+2.1yÈ¡×î´óÖµ
½â·½³Ì×é
8x+10y=60
8x+2y=40
£¬
µÃx=
35
8
£¬y=
5
2
£¬
¡ßx£¬yΪÕûÊý£¬¡àx=4£¬y=2
¼´x=4£¬y=2ʱ£¬zȡֵΪ21£®
µ±x=5£¬y=0ʱ£¬z=4.2¡Á5+2.1¡Á0=21£¬
¡àx=4£¬y=2»òx=5£¬y=0ʱ£¬zÈ¡×î´óÖµ21£®
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪעÒâÏßÐԹ滮֪ʶµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¹ýµãM£¨
p
2
£¬0£©µÄÖ±ÏßlÓëÅ×ÎïÏßy2=2px£¨p£¾0£©½»ÓÚA£¬BÁ½µã£¬ÇÒ
OA
OB
=-3£¬ÆäÖÐOÎª×ø±êÔ­µã£®
£¨1£©ÇópµÄÖµ£»
£¨2£©µ±|AM|+4|BM|×îСʱ£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¡÷ABCÖУ¬DΪBCµÄÖе㣬GΪADµÄÖе㣬¹ýµãGÈÎ×÷Ò»Ö±ÏßMN£¬·Ö±ð½»AB£¬ACÓÚM£¬NÁ½µã£¬Èô
AM
=x
AB
£¬
AN
=y
AC
£®ÊÔÎÊ£º
1
x
+
1
y
ÊÇ·ñΪ¶¨Öµ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆËãÏÂÁж¨»ý·Ö£º
£¨1£©
¡Ò
3
1
1
x
dx£»
£¨2£©
¡Ò
2
0
e
x
2
dx£»
£¨3£©
¡Ò
e+1
2
1
x-1
dx£»
£¨4£©
¡Ò
¦Ð
2
0
cos2x
cosx+sinx
dx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

²»µÈʽ|x-4|+|x+3|¡Ýaºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÆÕͨÎÄ¿Æ×ö£©ÒÑÖªf£¨x£©=
1
3
x3-x2+axÔÚÇø¼ä[-2£¬5]Éϵ¥µ÷µÝ¼õ£¬ÔòaµÄ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôM£¨2£¬1£©£¬µãCÊÇÍÖÔ²
x2
16
+
y2
7
=1µÄÓÒ½¹µã£¬µãAÊÇÍÖÔ²µÄ¶¯µã£¬Ôò|AM|+|AC|µÄ×îСֵÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª4£¨n+1£©£¨Sn+1£©=£¨n+2£©2an£¬Çóan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýg£¨x£©=
1
3
x3+ax2µÄͼÏóÔÚx=1´¦µÄÇÐÏ߯½ÐÐÓÚÖ±Ïß2x-y=0£®¼Çg£¨x£©µÄµ¼º¯ÊýΪf£¨x£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©¼ÇÕýÏîÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒ?n¡ÊN+£¬Sn=
1
2
f£¨an£©£¬Çóan£»
£¨3£©¶ÔÓÚÊýÁÐ{bn}Âú×㣺b1=
1
2
£¬bn+1=f£¨bn£©£¬µ±n¡Ý2£¬n¡ÊN+ʱ£¬ÇóÖ¤£º1£¼
1
1+b1
+
1
1+b2
+¡­+
1
1+bn
£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸