精英家教网 > 高中数学 > 题目详情
不等式|x-4|+|x+3|≥a恒成立,则实数a的取值范围是
 
考点:绝对值不等式的解法
专题:选作题,不等式
分析:根据绝对值的意义,|x-4|+|x+3|表示数轴上的x对应点到-3和4对应点的距离之和,它的最小值等于7,可得答案.
解答: 解:|x-4|+|x+3|表示数轴上的x对应点到-3和4对应点的距离之和,它的最小值等于7,
由不等式a|x-4|+|x+3|≥a恒成立知,a≤7,
故答案为:a≤7.
点评:本题考查绝对值的意义,绝对值不等式的解法,求出|x-4|+|x+3|的最小值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2012年10月莫言获得诺贝尔文学奖后,其家乡山东高密政府准备投资6.7亿元打造旅游带,包括莫言旧居周围的莫言文化体验区,红高粱文化休闲区,爱国主义教育基地等;为此某文化旅游公司向社会公开征集旅游带建设方案,在收到的方案中甲、乙、丙三个方案引起了专家评委的注意,现已知甲、乙、丙三个方案能被选中的概率分别为
2
5
3
4
1
3
,且假设各自能否被选中是无关的.
(1)求甲、乙、丙三个方案只有两个被选中的概率;
(2)记甲、乙、丙三个方案被选中的个数为ξ,试求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,D是AB中点,(直三棱柱,指侧棱垂直于底面的棱柱).
(1)求证:AC⊥BC1; 
(2)求证:AC1∥平面CDB1
(3)求点C到平面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°侧面PAD⊥底面ABCD.E、F分别为AD、PA中点.
(1)求证:PD∥平面CEF;
(2)求证:平面CEF⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足方程x2+y2-4x+1=0,则y-x的最大值为
 
;x2+y2最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等级产品一等二等甲5(万元)2.5(万元)乙2.5(万元)1.5(万元)利润项目产品工人(名)资金(万元)甲88乙210用量工序产品第一工序第二工序甲0.80.85乙0.750.8概率某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(1)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率P、P
(2)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(1)的条件下,求ξ、η的分布列及Eξ、Eη;
(3)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人40名,可用资.金60万元.设x、y分别表示生产甲、乙产品的数量,在(II)的条件下,x、y为何值时,Z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:不等式x2+px+q≤0的解集中只有一个元素的充要条件是p2=4q.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(k+
4
k
)lnx+
4-x2
x
,其中常数 k>0.
(1)讨论f(x)在(0,2)上的单调性;
(2)若k∈[4,+∞),曲线y=f(x)上总存在相异两点M(x1,y1),N(x2,y2)使得曲线y=f(x)在M,N两点处切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
alnx+1
ex
在x=1处的切线为y=
1
e

(Ⅰ)求a的值;
(Ⅱ)设f′(x)为f(x)的导函数,证明:对任意x>0,x•f′(x)-1<
1
e
-
x
ex

查看答案和解析>>

同步练习册答案