精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°侧面PAD⊥底面ABCD.E、F分别为AD、PA中点.
(1)求证:PD∥平面CEF;
(2)求证:平面CEF⊥平面PAD.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)利用E、F分别为AD、PA中点,可得EF∥PD,利用线面平行的判定定理,即可证明PD∥平面CEF;
(2)利用侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,证明CE⊥侧面PAD,即可证明平面CEF⊥平面PAD.
解答: 证明:(1)∵E、F分别为AD、PA中点,
∴EF∥PD,
∵EF?平面CEF,PD?平面CEF,
∴PD∥平面CEF;
(2)由题意△ACD为正三角形,故CE⊥AD,
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,
∴CE⊥侧面PAD,
∵CE?平面CEF
∴平面CEF⊥平面PAD
点评:本题考查直线与平面平行、平面与平面垂直的判定,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
5
5
,且A(0,1)是椭圆C的顶点.
(1)求椭圆C的方程;
(2)过点A作斜率为1的直线l,设以椭圆C的右焦点F为抛物线E:y2=2px(p>0)的焦点,若点M为抛物线E上任意一点,求点M到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

“(x-2)(x+1)≥0”是“
x-2
x+1
≥0”的
 
条件(充分不必要、必要不充分、充要、既不充分又不必要).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,D为BC的中点,G为AD的中点,过点G任作一直线MN,分别交AB,AC于M,N两点,若
AM
=x
AB
AN
=y
AC
.试问:
1
x
+
1
y
是否为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-1|+|x-2|.
(Ⅰ)画出函数y=f(x)的图象;
(Ⅱ)若不等式|a+b|-|a-b|≤|a|•f(x)对任意a,b∈R且a≠0恒成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列定积分:
(1)
3
1
1
x
dx;
(2)
2
0
e
x
2
dx;
(3)
e+1
2
1
x-1
dx;
(4)
π
2
0
cos2x
cosx+sinx
dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x-4|+|x+3|≥a恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若M(2,1),点C是椭圆
x2
16
+
y2
7
=1的右焦点,点A是椭圆的动点,则|AM|+|AC|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

判断并证明函数f(x)=|3x+2|-|3x-2|的奇偶性.

查看答案和解析>>

同步练习册答案