精英家教网 > 高中数学 > 题目详情
在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为(  )
A、
1
7
B、
2
7
C、
3
7
D、
4
7
考点:列举法计算基本事件数及事件发生的概率
专题:概率与统计
分析:总的事件数是C83,而从正方体的8个顶点中任取3个顶点可形成的等腰直角三角形的个数按所选取的三个顶点是只能是来自于该正方体的同一个面.根据概率公式计算即可.
解答: 解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,
所以共有4×6=24个,
而在8个点中选3个点的有C83=56,
所以所求概率为
24
56
=
3
7

故选:C
点评:本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边分别是a、b、c,已知sinB=
3
5
,b=5,且∠A=2∠B,则边长a的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

利用柯西不等式证明平方平均不等式.
设a1、a2、…,an∈R+,则
a1+a2+…+an
n
a12+a22+…+an2
n

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个角A,B,C所对的边分别是a,b,c,向量
m
=(2,-1),
n
=(sinBsinC,
3
+2cosBcosC),且
m
n

(1)求角A的大小.
(2)现给出以下三个条件:①B=45°;②2sinC-(
3
+1)sinB=0;③a=2.试从中再选择两个条件以确定△ABC,并求出所确定的△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=2py(p>0),直线l:y=x+1与抛物线C交于A,B两点,设直线OA,OB的斜率分别为k1.k2(其中O为坐标原点),且k1•k2=-
1
4

(1)求p的值;
(2)如图,已知点M(x0,y0)为圆:x2+y2-y=0上异于O点的动点,过点M的直线m交抛物线C于E,F两点.若M为线段EF的中点,求|EF|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=3,AC=2,
BD
=
1
2
BC
,则
AD
BD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,cosx),
b
=(cosx,sinx-2cosx),f(x)=
a
b

(1)求f(x)的单调区间;
(2)设0≤x≤
π
2
,①若
a
b
,求x;②求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,容量为9的4个样本,它们的平均数都是5,频率条形图如下,则标准差最大的一组是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
0a
b0
满足:Mαiiαi,其中λi(i=1,2)是互不相等的实常数,αi(i=1,2)是非零的平面列向量,λ1=1,α2=
1
1
,求矩阵M.

查看答案和解析>>

同步练习册答案