分析 a1=0,2an+1=1+anan+1,可得:2a2=1+0,解得a2=$\frac{1}{2}$,同理可得:a3=$\frac{2}{3}$,a4=$\frac{3}{4}$,…,可得${a}_{n}=\frac{n-1}{n}$.可得bn=$\frac{1}{\sqrt{n}}$-$\sqrt{\frac{{a}_{n+1}}{n}}$=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,利用“裂项求和”方法即可得出.
解答 解:∵a1=0,2an+1=1+anan+1,
∴2a2=1+0,解得a2=$\frac{1}{2}$,
同理可得:a3=$\frac{2}{3}$,a4=$\frac{3}{4}$,…,
可得${a}_{n}=\frac{n-1}{n}$,代入验证成立.
∴bn=$\frac{1}{\sqrt{n}}$-$\sqrt{\frac{{a}_{n+1}}{n}}$=$\frac{1}{\sqrt{n}}$-$\frac{1}{\sqrt{n+1}}$,
∴Sn=b1+b2+…+bn=$(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}})$+$(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}})$+…+$(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}})$
=1-$\frac{1}{\sqrt{n+1}}$,
则S100=$1-\frac{1}{\sqrt{101}}$.
故答案为:$1-\frac{1}{\sqrt{101}}$.
点评 本题考查了“裂项求和”、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0} | B. | {0,3} | C. | {-1,0,3} | D. | {0,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{5}{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com