精英家教网 > 高中数学 > 题目详情
5.已知x∈[$\frac{π}{4}$,$\frac{3π}{4}$],函数y=sinx-cosx的值域为[0,$\sqrt{2}$].

分析 根据两角和与差的正弦公式可得:y=$\sqrt{2}$sin(x-$\frac{π}{4}$),再根据题意可得x-$\frac{π}{4}$∈[0,$\frac{π}{2}$],然后利用正弦函数的图象可得0≤sin(x-$\frac{π}{4}$)≤1,进而得解.

解答 解:由题意可得:y=sinx-cosx=$\sqrt{2}$sin(x-$\frac{π}{4}$),
因为x∈[$\frac{π}{4}$,$\frac{3π}{4}$],
所以x-$\frac{π}{4}$∈[0,$\frac{π}{2}$],
所以0≤sin(x-$\frac{π}{4}$)≤1,
所以:0≤y≤$\sqrt{2}$,即函数y=sinx-cosx的值域为[0,$\sqrt{2}$].
故答案为:[0,$\sqrt{2}$].

点评 本题主要考查了正弦函数的有关性质,即值域与定义域.解题的关键是利用两角和与差的正弦余弦该点对函数解析式进行正确化简,以及对正弦函数的性质的熟练运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合S={1,2,a},T={2,3,4,b},若S∩T={1,2,3},则a-b=(  )
A.2B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,在边长为2的正方形ABCD中,圆心为B,半径为1的圆与AB、BC分别交于E,F,则阴影部分绕直线BC旋转一周形成几何体的体积等于(  )
A.πB.C.$\frac{4π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设$\overrightarrow{a}$=(3,-1),$\overrightarrow{b}$=(1,-2),则(2$\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an},a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N*),数列{bn}前n项之和Sn=12-12($\frac{2}{3}$)n,(n∈N*).
(1)求证{$\frac{1}{{a}_{n}}$}成等差数列;
(2)求{an},{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若数列{an}的通项公式为an=2n+3,则a1+a3+a5+…+a99=5150.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x>0,sinx>-1;q:?x>0,cosx>-1,则下列命题是真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∨qD.¬(p∨q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知α为第三象限角,cos2α=-$\frac{3}{5}$,则tan(π-2α)=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若A={x|x2+2x-8<0},B={x|x<1},则图中阴影部分表示的集合为(  )
A.(-4,1]B.(1,2)C.[1,2)D.(-4,1)

查看答案和解析>>

同步练习册答案