精英家教网 > 高中数学 > 题目详情
9.计算下列各式的值
(1)$\frac{A_8^8-A_9^5}{2A_8^5+4A_8^4}$
(2)$C_{3n}^{9-n}+C_8^{2n+1}$(n∈N*

分析 (1)由排列数公式化简$\frac{A_8^8-A_9^5}{2A_8^5+4A_8^4}$可得$\frac{A_8^8-A_9^5}{2A_8^5+4A_8^4}$=$\frac{4!-9}{8+4}$,计算即可得答案;
(2)根据题意,由组合数的意义可得$\left\{\begin{array}{l}{2n+1≤8}\\{9-n≥0}\\{9-n≤3n}\end{array}\right.$,解可得n的值,代入组合数公式中即可得答案.

解答 解:(1)$\frac{A_8^8-A_9^5}{2A_8^5+4A_8^4}$=$\frac{8!-\frac{9!}{4!}}{2×\frac{8!}{3!}+4×\frac{8!}{4!}}$=$\frac{4!×8!-9!}{8×8!+4×8!}$=$\frac{4!-9}{8+4}$=$\frac{5}{4}$,
(2)对于$C_{3n}^{9-n}+C_8^{2n+1}$,有$\left\{\begin{array}{l}{2n+1≤8}\\{9-n≥0}\\{9-n≤3n}\end{array}\right.$,
又由n为正整数,
解可得n=3,
故$C_{3n}^{9-n}+C_8^{2n+1}$=C96+C87=92.

点评 本题考查排列、组合数公式,(2)的关键是求出n的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+a|+|x+$\frac{1}{a}$|(a>0,m∈R,m≠0).
(1)当a=2时,求不等式f(x)>3的解集;
(2)证明:$f(m)+f({-\frac{1}{m}})≥4$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列{an}中,若a1=$\frac{1}{2}$,$\frac{1}{{{a_{n+1}}}}=\frac{1}{a_n}$+2,则这个数列的第20项为(  )
A.$\frac{2}{77}$B.40C.$\frac{1}{40}$D.$\frac{1}{39}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x>0,y>0,且2x+5y=20.
(1)求u=lgx+lgy的最大值;
(2)求$\frac{1}{x}+\frac{1}{y}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{an}是正项数列,且$\sqrt{a_1}+\sqrt{a_2}+…+\sqrt{a_n}={n^2}+3n({n∈{N^*}})$,则an=4(n+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.长方体ABCD-A1B1C1D1中,$A{A_1}=\sqrt{2}$,AB=1,AD=2,E为BC的中点.设△A1DE的重心为G,问是否存在实数λ,使得$\overrightarrow{AM}=λ\overrightarrow{AD}$,且MG⊥平面A1DE同时成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若(x2-$\frac{1}{x}$)n的二项展开式中的所有二项式系数和为64,则该二项式展开式中的常数项为(  )
A.20B.-15C.-20D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}sin(\frac{π}{2}x)-1,x≤0\\{log_a}x(a>0,a≠1),x>0\end{array}$的图象上关于y轴对称的点至少有3对,则实数a的取值范围是(  )
A.($\frac{{\sqrt{5}}}{5}$,1)B.(0,$\frac{\sqrt{5}}{5}$)C.$(\frac{{\sqrt{3}}}{3}\;,\;\;1)$D.$(0\;,\;\;\frac{{\sqrt{3}}}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,正△ABC的边长为4,CD是AB边上的高,EF分别是AC和BC的中点,现将△ABC沿CD翻折成直二面角A-DC-B.

(1)证明:AB∥平面DEF;
(2)在线段BC上是否存在点P,使AP⊥DE?如果存在,求出$\frac{BP}{BC}$的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案