精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,过焦点且垂直于长轴的弦长为.

(1)已知点是椭圆上两点,点为椭圆的上顶点,的重心恰好是椭圆的右焦点,求

在直线的斜率;

(2)过椭圆的右焦点作直线,直线与椭圆分别交于点,直线与椭圆分别交于点

,求四边形的面积最小时直线的方程.

【答案】(1);(2)

【解析】

试题分析:(1)由椭圆的离心率为,过焦点且垂直于长轴的弦长为,列出方程组求出,由此能求出椭圆方程为,由重心公式得,由此结合点差法能求出直线的斜率;(2)设由题意推导出,若直线中有一条斜率不存在,求出四边形的面积为;若直线的斜率存在,设直线的方程为,与椭圆方程联立,得,由此利用韦达定理、弦长公式求出,同理可求得,由此能求出四边形的面积的最小值及此时直线的方程.

试题解析:(1)由题意:,解得

所求椭圆的方程为.

,根据题意

.

.

(2)设

则由题意:

整理得:

,所以.

若直线中有一条斜率不存在,不妨设的斜率不存在,则轴,

所以

故四边形的面积.

若直线的斜率存在,设直线的方程为:

则由,得

同理可求得,,故四边形的面积:

(当),

此时,四边形面积的最小值为

所以直线方程为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】明代商人程大位在公元1592年编撰完成《算法统宗》一书.书中有如下问题:今有女子善织,初日迟,次日加倍,第三日转速倍增,第四日又倍增,织成绢六丈七尺五寸.问各日织若干?意思是:有一位女子善于织布,第一天由于不熟悉有点慢,第二天起每天织的布都是前一天的2倍,已知她前四天共织布675寸,问这位女子每天织布多少?根据文中的已知条件,可求得该女了第一天织布________尺,若织布一周(7天),共织________.(其中1丈为10尺,1尺为10寸)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,设它的左、右焦点分别为,左顶点为,上顶点为,且满足

)求椭圆的标准方程和离心率;

)过点作不与轴垂直的直线交椭圆(异于点)两点,试判断的大小是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),圆的参数方程为为参数)

1)求的普通方程;

2)设点,直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间与极值.

(2)时,是否存在,使得成立?若存在,求实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,平面,四边形为平行四边形,点分别为的中点,且.

1)求证:平面

2)若,求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某校某班44名同学的某次考试的物理成绩y和数学成绩x的散点图:

根据散点图可以看出yx之间有线性相关关系,但图中有两个异常点AB.经调查得知,A考生由于重感冒导致物理考试发挥失常,B生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计量的值:

,其中分别表示这42名同学的数学成绩、物理成绩,yx的相关系数

1)若不剔除AB两名考生的数据,用44数据作回归分析,设此时yx的相关系数为,试判断r的大小关系,并说明理由;

2)求y关于x的线性回归方程(系数精确到),并估计如果B考生参加了这次物理考试(已知B考生的数学成绩为125分),物理成绩是多少?(精确到个位).

附:回归方程中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】可组成不同的四位数的个数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国瓷器的历史上六棱形的瓷器非常常见,因为六、八是中国人的吉利数字,所以好多瓷器都做成六棱形和八棱形.数学李老师有一个正六棱柱形状的笔筒,如图,底面边长为,高为(底部及筒壁厚度忽略不计).一根长度为的圆铁棒(粗细忽略不计)斜放在笔筒内部,的一端置于正六棱柱某一侧棱的底端,另一端置于和该侧棱正对的侧棱上.一位小朋友玩耍时,向笔筒内注水,恰好将圆铁棒淹没,又将一个圆球放在笔筒口,球面又恰好接触水面,则球的表面积为______.

查看答案和解析>>

同步练习册答案