【题目】如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AB//CD,∠BAD=60°,CD=1,AD=2,AB=4,点G在线段AB上,AG=3GB,AA1=1
(1)证明:D1G/平面BB1C1C,
(2)求二面角A1-D1G-A的余弦值.
![]()
【答案】(1)证明见详解;(2)![]()
【解析】
(1)在平面中找到与直线D1G平行的直线
,再由线线平行推证线面平行即可;
(2)建立空间直角坐标系,处理二面角.
(1)连接
,在四边形
中:
因为
,且
//GB
故四边形
为平行四边形,故可得
//
,
又
平面BB1C1C,
平面BB1C1C
故
//平面BB1C1C.即证.
(2)因为四棱柱ABCD-A1B1C1D1为直四棱柱,故
底面ABCD
故以平面ABCD内垂直于DC的直线为
轴
以
分别为
轴,建立空间直角坐标系,如图所示:
![]()
故可得:![]()
设平面
的法向量为![]()
则
,即![]()
取![]()
设平面
的法向量为![]()
则
,即![]()
取![]()
![]()
又因为二面角A1-D1G-A是锐二面角,设其平面角为![]()
故
,即为所求二面角A1-D1G-A夹角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,长轴长为4,且过点
.
(1)求椭圆C的方程;
(2)过
的直线l交椭圆C于
两点,过A作x轴的垂线交椭圆C与另一点Q(Q不与
重合).设
的外心为G,求证
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校y(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱.
(已知:
,则认为y与x线性相关性很强;
,则认为y与x线性相关性一般;
,则认为y与x线性相关性较):
(2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).
参考公式和数据:
,
![]()
![]()
,
![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=
,∠BAD=120°.
![]()
(1)求异面直线A1B与AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是一块平行四边形园地
,经测量,![]()
.拟过线段
上一点
设计一条直路
(点
在四边形
的边上,不计直路的宽度),将该园地分为面积之比为
的左,右两部分分别种植不同花卉.设
(单位:m).
![]()
(1)当点
与点
重合时,试确定点
的位置;
(2)求
关于
的函数关系式;
(3)试确定点
的位置,使直路
的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴的建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程;
(2)若点
与点
分别为曲线
动点,求
的最小值,并求此时的
点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(
为参数),在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,曲线
的方程为
.
(1)求曲线
的直角坐标方程;
(2)设曲线
与直线
交于点
,点
的坐标为(3,1),求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.
![]()
(1)求异面直线BP与AC1所成角的余弦值;
(2)求直线CC1与平面AQC1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图(1),函数
的图象与x轴围成一个封闭区域A(阴影部分),将区域A(阴影部分)沿z轴的正方向上移6个单位,得到一几何体.现有一个与之等高的底面为椭圆的柱体如图(2)所示,其底面积与区域A(阴影部分)的面积相等,则此柱体的体积为______.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com