精英家教网 > 高中数学 > 题目详情
14.已知不等式ax2-3x+2>0的解集为{x|x<1或x>b}.
(1)求a、b的值;
(2)若不等式x2-b(a+3)x-c>0恒成立,则求出c的取值范围.

分析 (1)由一元二次不等式与对应方程的关系,利用根与系数的关系求出a、b的值;
(2)由一元二次不等式恒成立时判别式△<0,解不等式求出 c的取值范围.

解答 解:(1)由题意知a>0且1,b是方程ax2-3x+2=0的根,…(2分)
把x=1代入方程得,a=1,
又$1×b=\frac{2}{a}$=2,
∴b=2;     …(6分)
(2)由(1)知,不等式化为x2-2(3+1)x-c>0恒成立,
可知△=64+4c<0,…(10分)
解得 c<-16.…(12分)

点评 本题考查了一元二次不等式与对应方程的关系和应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.
(1)根据以上信息,完成下面2×2列联表:
语文优秀语文不优秀总计
外语优秀1610
外语不优秀14
总计
(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?
(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望E(X).
p(K2≥k00.0100.0050.001
k06.6357.87910.828
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
其中:n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.二进制数110011(2)化为十进制数为(  )
A.51B.52C.25223D.25004

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在数列{an}中,${a_1}=4,{a_{n+1}}=2{a_n}-1({n∈{N^*}})$,则a4等于(  )
A.7B.13C.25D.49

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程为4x-3y=0,则双曲线的离心率为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0\;,b>0)$的一条渐近线方程为y=2x,则离心率e=(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,并制成下面的2×2列联表:
及格不及格合计
很少使用手机20626
经常使用手机101424
合计302050
(1)判断是否有97.5%的把握认为经常使用手机对学习成绩有影响?
(2)从这50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数学题,甲、乙独立解出此题的概率分别为P1,P2,且P2=0.5,若|P1-P2|≥0.4,则此二人适合结为学习上互帮互助的“学习师徒”,记X为两人中解出此题的人数,若X的数学期望E(X)=1.4,问两人是否适合结为“学习师徒”?
参考公式及数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.100.050.0250.010
K02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=sin(ωx+φ)(ω>0,0<φ≤$\frac{π}{2}$)的部分图象如图所示,则cos(5ωφ)等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2\sqrt{3}+2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为(2$\sqrt{3}$,$\frac{2π}{3}$).
(Ⅰ)求直线l以及曲线C的极坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求△PAB的面积.

查看答案和解析>>

同步练习册答案