7£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cos¦È}\\{y=2\sqrt{3}+2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬µãPµÄ¼«×ø±êΪ£¨2$\sqrt{3}$£¬$\frac{2¦Ð}{3}$£©£®
£¨¢ñ£©ÇóÖ±ÏßlÒÔ¼°ÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó¡÷PABµÄÃæ»ý£®

·ÖÎö £¨¢ñ£©Ö±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt£¬µÃµ½Ö±ÏßlµÄÆÕͨ·½³ÌΪy=$\sqrt{3}x$£¬ÓÉ´ËÄÜÇó³öÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»ÇúÏßCµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦È£¬µÃÇúÏßCµÄÆÕͨ·½³Ì£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄ¼«×ø±ê·½³Ì£®
£¨¢ò£©ÓÉ$\left\{\begin{array}{l}{{¦Ñ}^{2}-2¦Ñcos¦È-4\sqrt{3}¦Ñsin¦È+9=0}\\{¦È=\frac{¦Ð}{3}}\end{array}\right.$£¬µÃµ½¦Ñ2-7¦Ñ+9=0£¬ÓÉΤ´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½Çó³ö|AB|£¬¡÷PABµÄÃæ»ýS¡÷PAB=|S¡÷POB-S¡÷POA|£¬ÓÉ´ËÄÜÇó³ö½á¹û£®

½â´ð ½â£º£¨¢ñ£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýt£¬µÃµ½Ö±ÏßlµÄÆÕͨ·½³ÌΪy=$\sqrt{3}x$£¬
¡à$¦Ñsin¦È=\sqrt{3}¦Ñcos¦È$£¬¡à$¦È=\frac{¦Ð}{3}$£¬
¡àÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{¦Ð}{3}$£¨¦Ñ¡ÊR£©£¬
¡ßÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+2cos¦È}\\{y=2\sqrt{3}+2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÇúÏßCµÄÆÕͨ·½³ÌΪ£º£¨x-1£©2+£¨y-2$\sqrt{3}$£©2=4£¬
Ôò£¨¦Ñcos¦È-1£©2+£¨$¦Ñsin¦È-2\sqrt{3}$£©2=4£¬
ÔòÇúÏßCµÄ¼«×ø±ê·½³ÌΪ${¦Ñ}^{2}-2¦Ñcos¦È-4\sqrt{3}¦Ñsin¦È+9=0$£®
£¨¢ò£©ÓÉ$\left\{\begin{array}{l}{{¦Ñ}^{2}-2¦Ñcos¦È-4\sqrt{3}¦Ñsin¦È+9=0}\\{¦È=\frac{¦Ð}{3}}\end{array}\right.$£¬
µÃµ½¦Ñ2-7¦Ñ+9=0£¬ÉèÆäÁ½¸ùΪ¦Ñ1£¬¦Ñ2£¬
Ôò¦Ñ1+¦Ñ2=7£¬¦Ñ1¦Ñ2=9£¬
¡à|AB|=|¦Ñ2-¦Ñ1|=$\sqrt{£¨{¦Ñ}_{1}+{¦Ñ}_{2}£©^{2}-4{¦Ñ}_{1}{¦Ñ}_{2}}$=$\sqrt{13}$£¬
¡ßµãPµÄ¼«×ø±êΪ£¨$2\sqrt{3}£¬\frac{2¦Ð}{3}$£©£¬¡à|OP|=2$\sqrt{3}$£¬$¡ÏPOB=\frac{¦Ð}{3}$£¬
¡à¡÷PABµÄÃæ»ý£ºS¡÷PAB=|S¡÷POB-S¡÷POA|=$\frac{1}{2}¡Á2\sqrt{3}¡Á\frac{\sqrt{3}}{2}¡Á|AB|$=$\frac{3\sqrt{13}}{2}$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÇúÏߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄÇ󷨣¬¿¼²é²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Èý½Çº¯ÊýÐÔÖʵȻù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª²»µÈʽax2-3x+2£¾0µÄ½â¼¯Îª{x|x£¼1»òx£¾b}£®
£¨1£©Çóa¡¢bµÄÖµ£»
£¨2£©Èô²»µÈʽx2-b£¨a+3£©x-c£¾0ºã³ÉÁ¢£¬ÔòÇó³öcµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬AΪÒÔÔ­µãOΪԲÐĵĵ¥Î»Ô²OÓëxÕý°ëÖáµÄ½»µã£¬ÔÚÔ²ÐĽÇΪ$\frac{¦Ð}{3}$µÄÉÈÐÎAOBµÄ»¡ABÉÏÈÎȡһµã P£¬×÷ PN¡ÍOAÓÚN£¬Á¬½áPO£¬¼Ç¡ÏPON=¦È£®
£¨1£©Éè¡÷PONµÄÃæ»ýΪy£¬Ê¹yÈ¡µÃ×î´óֵʱµÄµãP¼ÇΪE£¬µãN¼ÇΪF£¬Çó´Ëʱ$\overrightarrow{OE}•\overrightarrow{OF}$µÄÖµ£»
£¨2£©Çók=a|$\overrightarrow{PN}$|•|$\overrightarrow{ON}$|+$\sqrt{2}\overrightarrow{OP}•\overrightarrow{OE}$£¨a¡ÊR£¬E ÊÇÔÚ£¨1£©Ìõ¼þϵĵã E£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Éèy=x2-x£¬Ôòx¡Ê[0£¬1]ÉϵÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®0B£®-$\frac{1}{4}$C£®$\frac{1}{2}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏÂÁк¯ÊýÖУ¬×îСÕýÖÜÆÚΪ¦ÐµÄżº¯ÊýÊÇ£¨¡¡¡¡£©
A£®y=sin2xB£®y=cos$\frac{x}{2}$C£®y=cos£¨2x$+\frac{¦Ð}{3}$£©D£®y=3cos2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Æ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1+\frac{\sqrt{2}}{2}t\\ y=\frac{\sqrt{2}}{2}t\end{array}$£¨t¡ÊR£©£®ÒÔÖ±½Ç×ø±êϵԭµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos 2¦È+4¦Ñ2sin2¦È=3£®
£¨1£©Çó³öÖ±ÏßlµÄÆÕͨ·½³Ì¼°ÇúÏßC1µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC1½»ÓÚA£¬BÁ½µã£¬µãCÊÇÇúÏßC1ÉÏÓëA£¬B²»ÖغϵÄÒ»µã£¬Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Éè¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬$b=2\sqrt{3}$£¬$B=\frac{2¦Ð}{3}$£®
£¨1£©Èôa=2£¬Çó½ÇC£»
£¨2£©ÈôDΪACµÄÖе㣬$BD=\sqrt{2}$£¬Çó¡÷ABCµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÖ±Ïßl£º2x-y-2=0ºÍÖ±Ïßl£ºx+2y-1=0¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÔòÖ±ÏßlµÄбÂÊΪ$\frac{1}{3}$»ò-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¾­¹ýÈô¸É¸ö¹Ì¶¨ºÍÁ÷¶¯µÄµØÃæÒ£¸Ð¹Û²âÕ¾¼à²â£¬²¢Í¨¹ýÊý¾Ý»ã×Ü£¬¼ÆËã³öÒ»¸öº½ÌìÆ÷ÔÚijһʱ¿ÌµÄλÖã¬ÀëµØÃæ2384ǧÃ×£¬µØÇò°ë¾¶Îª6371ǧÃ×£¬´Ëʱ¾­¶ÈΪ80¡ã£¬Î³¶ÈΪ75¡ã£®ÊÔ½¨Á¢Êʵ±µÄ×ø±êϵ£¬È·¶¨³ö´Ëʱº½ÌìÆ÷µãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸