精英家教网 > 高中数学 > 题目详情
17.经过若干个固定和流动的地面遥感观测站监测,并通过数据汇总,计算出一个航天器在某一时刻的位置,离地面2384千米,地球半径为6371千米,此时经度为80°,纬度为75°.试建立适当的坐标系,确定出此时航天器点P的坐标.

分析 在赤道平面上,选取地球球心O为极点,以O为端点且与零子午线相交的射线Ox为极轴,建立球坐标系,由此能求出点P的球坐标.

解答 解:在赤道平面上,选取地球球心O为极点,
以O为端点且与零子午线相交的射线Ox为极轴,建立球坐标系,如图.
由已知航天器位于经度80°,可知θ=80°,
由航天器位于纬度75°,可知φ=90°-75°=15°,
由航天器离地面2384千米,地球半径为6371千米,
可知r=2384+6371=8755千米.
∴点P的球坐标为(8755 km,15°,80°).

点评 本题考查点的坐标的求法,考查坐标系的建立等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2\sqrt{3}+2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为(2$\sqrt{3}$,$\frac{2π}{3}$).
(Ⅰ)求直线l以及曲线C的极坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆M过点A(1,3),B(4,2),且圆心在直线y=x-3上.
(Ⅰ)求圆M的方程;
(Ⅱ)若过点(-4,1)的直线l与圆M相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,有一边长为6的正方形铁片,在铁片的四角各截去一个边长为x的小正方形后,沿图中虚线部分折起,做成一个无盖方盒.
(1)试用x表示方盒的容积V(x),并写出x的范围;
(2)求方盒容积V(x)的最大值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量ξ服从正态分布N(3,σ2),若P(ξ<2)=0.3,则P(2<ξ<4)的值等于(  )
A.0.5B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点$(\sqrt{3},5)$在直线l:ax-y+2=0上,则直线l的倾斜角为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数 f(x)=Asin(ω x+φ)(A>0,ω>0)的部分图象如图所示,则f($\frac{11π}{24}$)的值为(  )
A.-$\frac{\sqrt{6}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点P(2,-1,3)在坐标平面xOz内的投影点坐标为(2,0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若$\sqrt{3}$tan20°+msin20°=3,则m的值为4$\sqrt{3}$.

查看答案和解析>>

同步练习册答案