精英家教网 > 高中数学 > 题目详情
5.如图,有一边长为6的正方形铁片,在铁片的四角各截去一个边长为x的小正方形后,沿图中虚线部分折起,做成一个无盖方盒.
(1)试用x表示方盒的容积V(x),并写出x的范围;
(2)求方盒容积V(x)的最大值及相应x的值.

分析 (1)求出方盒的容积V(x),根据边长大于0,求出x的范围即可;
(2)求出v(x)的导数,根据函数的单调性求出v(x)的最大值以及相应x的值即可.

解答 解:(1)由题意,无盖方盒底面是边长为6-2x的正方形,高为x,
从而有:V(x)=x(6-2x)2=4x3-24x2+36x,
其中,x满足:$\left\{{\begin{array}{l}{x>0}\\{6-2x>0}\end{array}}\right.$,∴0<x<3,
(2)由(1)知:V(x)=4x3-24x2+36x,x∈(0,3),
V′(x)=12x2-48x+36=12(x-1)(x-3),
 若0<x<1,则V′(x)>0;若1<x<3,则V′(x)<0,
∴V(x)在(0,1)上单调递增,在(1,3)上单调递减,
∴V(x)在x=1处取得极大值,也是最大值,
∴V(x)max=V(1)=16,
故方盒容积V(x)的最大值为16,相应x的值为1.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设y=x2-x,则x∈[0,1]上的最大值是(  )
A.0B.-$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线l:2x-y-2=0和直线l:x+2y-1=0关于直线l对称,则直线l的斜率为$\frac{1}{3}$或-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若“存在实数x,使x2-2x+m=0”为真命题,则实数m的取值范围是m≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若指数函数f(x)=(a-1)x是R上的单调减函数,则实数a的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.北京是我国严重缺水的城市之一.为了倡导“节约用水,从我做起”,小明在他所在学校的2000名同学中,随机调查了40名同学家庭中一年的月均用水量(单位:吨),并将月均用水量分为6组:[2,4),[4,6),[6,8),[8,10),[10,12),[12,14]加以统计,得到如图所示的频率分布直方图.
(Ⅰ)给出图中实数a的值;
(Ⅱ)根据样本数据,估计小明所在学校2000名同学家庭中,月均用水量低于8吨的约有多少户;
(Ⅲ)在月均用水量大于或等于10吨的样本数据中,小明决定随机抽取2名同学家庭进行访谈,求这2名同学中恰有1人所在家庭的月均用水量属于[10,12)组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.经过若干个固定和流动的地面遥感观测站监测,并通过数据汇总,计算出一个航天器在某一时刻的位置,离地面2384千米,地球半径为6371千米,此时经度为80°,纬度为75°.试建立适当的坐标系,确定出此时航天器点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知F是抛物线x2=4y的焦点,P是抛物线上的一个动点,且A的坐标为(0,-1),则$\frac{|PF|}{|PA|}$的最小值等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若对?x∈[0,+∞),不等式2ax≤ex-1恒成立,则实数a的最大值是(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.2

查看答案和解析>>

同步练习册答案