精英家教网 > 高中数学 > 题目详情
20.若指数函数f(x)=(a-1)x是R上的单调减函数,则实数a的取值范围是(1,2).

分析 根据指数函数的图象和性质,列出不等式求出a的取值范围.

解答 解:指数函数f(x)=(a-1)x是R上的单调减函数,
∴0<a-1<1,
解得1<a<2;
∴实数a的取值范围是(1,2).
故答案为:(1,2).

点评 本题考查了指数函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)已知a>0,b>0,a+b=1,求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}≥8$;
(Ⅱ)解不等式:|x-1|+|x+2|≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=|x+1|+|x+a|的最小值为3,则实数a的值为(  )
A.A、B.2C.2或-4D.4或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆M过点A(1,3),B(4,2),且圆心在直线y=x-3上.
(Ⅰ)求圆M的方程;
(Ⅱ)若过点(-4,1)的直线l与圆M相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\frac{2x}{2-x}$,设f1(x)=f(x),fn(x)=fn-1[fn-1(x)](n>1,n∈N*),若fm(x)=$\frac{x}{1-256x}$(m∈N*),则m等于(  )
A.9B.10C.11D.126

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,有一边长为6的正方形铁片,在铁片的四角各截去一个边长为x的小正方形后,沿图中虚线部分折起,做成一个无盖方盒.
(1)试用x表示方盒的容积V(x),并写出x的范围;
(2)求方盒容积V(x)的最大值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量ξ服从正态分布N(3,σ2),若P(ξ<2)=0.3,则P(2<ξ<4)的值等于(  )
A.0.5B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数 f(x)=Asin(ω x+φ)(A>0,ω>0)的部分图象如图所示,则f($\frac{11π}{24}$)的值为(  )
A.-$\frac{\sqrt{6}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如表:
年     份2008200920102011201220132014
年份代号t1234567
人均纯收入y2.73.63.34.65.45.76.2
对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(1)求y关于t的线性回归方程;
(2)预测该地区2017年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.

查看答案和解析>>

同步练习册答案