精英家教网 > 高中数学 > 题目详情
13.若“存在实数x,使x2-2x+m=0”为真命题,则实数m的取值范围是m≤1.

分析 根据“存在x∈R,x2-2x+m=0”为真命题,△≥0解不等式求出m的取值范围.

解答 解:∵“存在x∈R,x2-2x+m=0”为真命题,
即△=4-4m≥0,
解得m≤1.
∴实数m的取值范围是:m≤1.
故答案为:m≤1.

点评 本题考查了存在命题的应用问题.是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知过点(1,2)总可以向圆x2+y2+2kx+2y+k2-8=0作两条切线,则实数k的范围为{k|k≠-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|2x+1|-|x-2|,不等式f(x)≤2的解集为M.
(1)求M;
(2)记集合M的最大元素为m,若正数a,b,c满足a2+3b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|2x-1|-|ax+2|,.
(Ⅰ)当a=1时,求不等式f(x)>0的解集;
(Ⅱ)当a=2时,若?x0∈R,使f(x0)<4m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆M过点A(1,3),B(4,2),且圆心在直线y=x-3上.
(Ⅰ)求圆M的方程;
(Ⅱ)若过点(-4,1)的直线l与圆M相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知m是给定的一个常数,若直线x-3y+m=0上存在两点A,B,使得点P(m,0)满足|PA|=|PB|,则线段AB的中点坐标是($\frac{4m}{5}$,$\frac{3m}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,有一边长为6的正方形铁片,在铁片的四角各截去一个边长为x的小正方形后,沿图中虚线部分折起,做成一个无盖方盒.
(1)试用x表示方盒的容积V(x),并写出x的范围;
(2)求方盒容积V(x)的最大值及相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点$(\sqrt{3},5)$在直线l:ax-y+2=0上,则直线l的倾斜角为(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l1:3x+4y-2=0,l2:2x+y+2=0相交于点P.
(1)求点P的坐标;
(2)求过点P且与直线x-2y-1=0垂直的直线l的方程.

查看答案和解析>>

同步练习册答案