| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{5}}{2}$ |
分析 根据题意,由双曲线的方程可得其渐近线方程,结合题意可得$\frac{b}{a}$=2,即b=2a,由双曲线的几何性质可得c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,结合双曲线的离心率公式计算可得答案.
解答 解:根据题意,双曲线的方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0\;,b>0)$,
其焦点在x轴上,则其渐近线方程为y=±$\frac{b}{a}$x,
又由双曲线的一条渐近线方程为y=2x,则有$\frac{b}{a}$=2,即b=2a,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
则其离心率e=$\frac{c}{a}$=$\sqrt{5}$,
故选:B.
点评 本题考查双曲线的几何性质,要掌握双曲线的渐近线方程的求法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 未过度使用 | 过度使用 | 合计 | |
| 未患颈椎病 | 15 | 5 | 20 |
| 患颈椎病 | 10 | 20 | 30 |
| 合计 | 25 | 25 | 50 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com