精英家教网 > 高中数学 > 题目详情
7.现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:
 未过度使用 过度使用 合计
 未患颈椎病15520
 患颈椎病102030
 合计252550
(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为ε,求ε的分布列及数学期望.
参考数据与公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.

分析 (1)根据列联表,计算观测值,对照临界值即可得出结论;
(2)根据题意知随机变量?的所有可能取值,计算对应的概率值,写出ε的分布列,再计算数学期望值.

解答 解:(1)根据列联表,计算观测值K2=$\frac{50{×(20×15-5×10)}^{2}}{25×25×30×20}$=$\frac{25}{3}$≈8.333>7.879,
且P(k2≥7.879)=0.005=0.5%,…(3分)
∴有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关系;…(4分)
(2)根据题意,?的所有可能取值为0,1,2,3;            …(5分)
∴P(ε=0)=$\frac{C_7^3}{{C_{10}^3}}$=$\frac{7}{24}$,
P(ε=1)=$\frac{C_3^1•C_7^2}{{C_{10}^3}}$=$\frac{21}{40}$,
P(ε=2)=$\frac{C_3^2•C_7^1}{{C_{10}^3}}$=$\frac{7}{40}$,
P(ε=3)=$\frac{C_3^3}{{C_{10}^3}}$=$\frac{1}{120}$;        …(9分)
∴ε的分布列如下:

ε0123
P(ε)$\frac{7}{24}$$\frac{21}{40}$$\frac{7}{40}$$\frac{1}{120}$
…(10分)
∴ε的数学期望为E?=0×$\frac{7}{24}$+1×$\frac{21}{40}$+2×$\frac{7}{40}$+3×$\frac{1}{120}$=$\frac{9}{10}$=0.9.…(12分)

点评 本题考查了独立性检验和离散型随机变量的分布列与数学期望的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x+2|-2|x-1|.
(Ⅰ)求不等式f(x)≥-2的解集M;
(Ⅱ)对任意x∈[a,+∞],都有f(x)≤x-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将曲线y=sin 2x按照伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$后得到的曲线方程为(  )
A.y′=3sin 2xB.y′=3sin x′C.y′=3sin$\frac{1}{2}$x′D.y′=$\frac{1}{3}$sin 2x′

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>0,设p:实数x满足x2-4ax+3a2<0,q:实数x满足(x-3)2<1.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在数列{an}中,${a_1}=4,{a_{n+1}}=2{a_n}-1({n∈{N^*}})$,则a4等于(  )
A.7B.13C.25D.49

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,设A,B两点在涪江的两岸,一测量者在A的同侧所在的江岸边选定一点C,
测出AC的距离为50m,∠ACB=45°,∠CAB=105°.则A,B两点间的距离为(  )
A.$50\sqrt{2}$mB.50mC.$50\sqrt{3}$mD.$50\sqrt{6}$m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0\;,b>0)$的一条渐近线方程为y=2x,则离心率e=(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若平面区域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夹在两条斜率为$\frac{2}{3}$的平行直线之间,则这两平行直线间的距离的最小值为(  )
A.$\sqrt{2}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{5\sqrt{13}}}{13}$D.$5\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.计算$\int\begin{array}{l}1+e\\ 2\end{array}\frac{1}{x-1}dx$=1.

查看答案和解析>>

同步练习册答案