精英家教网 > 高中数学 > 题目详情
2.在数列{an}中,${a_1}=4,{a_{n+1}}=2{a_n}-1({n∈{N^*}})$,则a4等于(  )
A.7B.13C.25D.49

分析 由an+1=2an-1,化为:an+1-1=2(an-1),利用等比数列的通项公式即可得出.

解答 解:由an+1=2an-1,化为:an+1-1=2(an-1),
∴数列{an-1}是等比数列,首项为3,公比为2.
∴an-1=3×2n-1,即an=3×2n-1+1,
∴a4=3×23+1=25.
故选:C.

点评 本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|2x-a|,且不等式f(x)≤5的解集为{x|-2≤x≤3}.
(Ⅰ)求实数a的值.
(Ⅱ)解不等式f(x)-|x+2|>x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.正方体ABCD-A1B1C1D1中,点M是棱CC1的中点.
(1)求证:AC1∥平面BDM
(2)求证:平面ACC1A1⊥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{3}$,则$cos(\frac{5π}{6}+α)$+${sin^2}(α-\frac{π}{6})$=$\frac{2-\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:
 未过度使用 过度使用 合计
 未患颈椎病15520
 患颈椎病102030
 合计252550
(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为ε,求ε的分布列及数学期望.
参考数据与公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知不等式ax2-3x+2>0的解集为{x|x<1或x>b}.
(1)求a、b的值;
(2)若不等式x2-b(a+3)x-c>0恒成立,则求出c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x+$\frac{a}{x}$-3lnx(a∈R).
(1)若x=3是f(x)的一个极值点,求a值及f(x)的单调区间;
(2)当a=-2时,求f(x)在区间[1,e]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设y=x2-x,则x∈[0,1]上的最大值是(  )
A.0B.-$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案