精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=|2x-a|,且不等式f(x)≤5的解集为{x|-2≤x≤3}.
(Ⅰ)求实数a的值.
(Ⅱ)解不等式f(x)-|x+2|>x+1.

分析 (Ⅰ)先求得不等式f(x)≤5 的解集,再根据它的解集为{x|-2≤x≤3},求得a的值.
(Ⅱ)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.

解答 解:(Ⅰ)不等式f(x)≤5,即|2x-a|≤5,∴-5≤2x-a≤5,∴$\frac{a-5}{2}$≤x≤$\frac{a+5}{2}$.
再根据不等式f(x)≤5的解集为{x|-2≤x≤3},可得$\frac{a-5}{2}$=-2,且 $\frac{a+5}{2}$=3,可得a=1.
(Ⅱ)不等式f(x)-|x+2|>x+1,即|2x-1|≥|x+2|+x+1,
即 $\left\{\begin{array}{l}{x≤-2}\\{1-2x≥-1}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{-2<x<\frac{1}{2}}\\{1-2x≥2x+3}\end{array}\right.$②,或 $\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{2x-1≥2x+3}\end{array}\right.$③.
解①求得x≤-2,解②求得-2<x≤-$\frac{1}{2}$,解③求得x∈∅,
综上可得,原不等式的解集为{x x≤-$\frac{1}{2}$}.

点评 本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.五位同学去听同时进行的4个课外知识讲座,每个同学可自由选择,则不同的选择种数是(  )
A.54B.5×4×3×2C.45D.5×4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆H过点B(1,0)和点C(3,2),且圆心H在直线x+2y-6=0上.
(1)若直线1过点C,且被圆H截得的弦长为2,求直线1的方程;
(2)对于线段BH上的任意一点P,若在以C为圆心的圆上都存在不同的两点M,N,M是线段PN的中点,求圆C的半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.水平放置的△ABC,用斜二测画法作出的直观图是如图所示的△A'B'C',其中O'A'=O'B'=2,$O'C'=\sqrt{3}$,则△ABC绕AB所在直线旋转一周后形成的几何体的表面积为(  )
A.$8\sqrt{3}π$B.$16\sqrt{3}π$C.$({8\sqrt{3}+3})π$D.$({16\sqrt{3}+12})π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+b(a,b是实数),g(x)=2x2-4x-16
(1)求不等式g(x)<0的解集?
(2)若|f(x)|≤|g(x)|对任意的实数都成立,求a,b?
(3)在(2)的条件下,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x+2|-2|x-1|.
(Ⅰ)求不等式f(x)≥-2的解集M;
(Ⅱ)对任意x∈[a,+∞],都有f(x)≤x-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.
(1)根据以上信息,完成下面2×2列联表:
语文优秀语文不优秀总计
外语优秀1610
外语不优秀14
总计
(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?
(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望E(X).
p(K2≥k00.0100.0050.001
k06.6357.87910.828
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
其中:n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C的圆心在直线4x+y=0上,且与直线x+y-1=0相切于点P(3,-2).
(1)求圆C的方程;
(2)过圆内一点P(2,-3)的直线l与圆交于A、B两点,求弦长AB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在数列{an}中,${a_1}=4,{a_{n+1}}=2{a_n}-1({n∈{N^*}})$,则a4等于(  )
A.7B.13C.25D.49

查看答案和解析>>

同步练习册答案