精英家教网 > 高中数学 > 题目详情
20.计算$\int\begin{array}{l}1+e\\ 2\end{array}\frac{1}{x-1}dx$=1.

分析 找出被积函数的原函数,然后计算求值.

解答 解:$\int\begin{array}{l}1+e\\ 2\end{array}\frac{1}{x-1}dx$=ln(x-1)|${\;}_{2}^{1+e}$=ln(1+e-1)-ln(2-1)=lne=1,
故答案为:1

点评 本题考查了定积分的计算;关键是明确被积函数的原函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:
 未过度使用 过度使用 合计
 未患颈椎病15520
 患颈椎病102030
 合计252550
(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为ε,求ε的分布列及数学期望.
参考数据与公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C:x2+y2=4,直线l:y+x-t=0,P为直线l上一动点,O为坐标原点.
(1)若直线l交圆C于A、B两点,且∠AOB=$\frac{2π}{3}$,求实数t的值;
(2)若t=4,过点P做圆的切线,切点为T,求$\overrightarrow{PO}$•$\overrightarrow{PT}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边在直线y=3x上,则tan2θ等于-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设y=x2-x,则x∈[0,1]上的最大值是(  )
A.0B.-$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.求直线l:3x-y-6=0被圆C:(x-1)2+(y-2)2=5截得的弦AB的长为  (  )
A.2B.$4\sqrt{2}$C.$\sqrt{10}$D.$2\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{\sqrt{2}}{2}t\\ y=\frac{\sqrt{2}}{2}t\end{array}$(t∈R).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2cos 2θ+4ρ2sin2θ=3.
(1)求出直线l的普通方程及曲线C1的直角坐标方程;
(2)若直线l与曲线C1交于A,B两点,点C是曲线C1上与A,B不重合的一点,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\int{\begin{array}{l}1\\ 0\end{array}}({e^x}+2x)$=e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.北京是我国严重缺水的城市之一.为了倡导“节约用水,从我做起”,小明在他所在学校的2000名同学中,随机调查了40名同学家庭中一年的月均用水量(单位:吨),并将月均用水量分为6组:[2,4),[4,6),[6,8),[8,10),[10,12),[12,14]加以统计,得到如图所示的频率分布直方图.
(Ⅰ)给出图中实数a的值;
(Ⅱ)根据样本数据,估计小明所在学校2000名同学家庭中,月均用水量低于8吨的约有多少户;
(Ⅲ)在月均用水量大于或等于10吨的样本数据中,小明决定随机抽取2名同学家庭进行访谈,求这2名同学中恰有1人所在家庭的月均用水量属于[10,12)组的概率.

查看答案和解析>>

同步练习册答案