精英家教网 > 高中数学 > 题目详情
19.设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=2x,则函数f(x)的解析式是f(x)=$\frac{1}{2}({2}^{x}+{2}^{-x})$.

分析 将-x代入已知等式,利用函数f(x)、g(x)的奇偶性,得到关于f(x)与g(x)的又一个方程,将二者看做未知数解方程组,解得f(x)的解析式.

解答 解:∵函数f(x)、g(x)分别是偶函数、奇函数,
∴f(-x)=f(x),g(-x)=-g(x),
令x取-x,代入f(x)+g(x)=2x ①,
f(-x)+g(-x)=2-x
即f(x)-g(x)=2-x ②,
由①②解得,f(x)=$\frac{1}{2}({2}^{x}+{2}^{-x})$,
故答案为:f(x)=$\frac{1}{2}({2}^{x}+{2}^{-x})$.

点评 本题考查函数奇偶性的性质的应用,以及列方程组法求函数的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={0,1,x2-5x},有-4∈A,则实数x的值为(  )
A.1B.4C.1或4D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x、y满足$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-4≥0}\\{x≤3}\end{array}\right.$,则u=$\frac{y}{x}$的取值范围是[$\frac{1}{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知α为第二象限角,sinα=$\frac{4}{5}$,则sin(π-2α)=(  )
A.-$\frac{24}{25}$B.$\frac{24}{25}$C.$\frac{12}{25}$D.-$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$cos(θ+\frac{π}{4})=\frac{{\sqrt{10}}}{10},θ∈(0,\frac{π}{2})$,则$sin(2θ-\frac{π}{3})$=$\frac{4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x-1+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)在$[-2,-\frac{1}{2}]$上有两个公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上函数f(x)满足:f(x)=f(-x),f(2+x)=f(2-x),若曲线y=f(x)在x=1处的切线方程为x+y-3=0,则y=f(x)在x=2015的切线方程为(  )
A.x+y-3=0B.x-y-2013=0C.x-y-2015=0D.x-y+2017=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设随机变量ξ~N(μ,σ2),且P(ξ<-2)=P(ξ>2)=0.3,则P(-2<ξ<0)=0.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z=$\frac{2-i}{1+i}$,则复数z的模|z|=(  )
A.$\frac{\sqrt{10}}{2}$B.1C.10D.2

查看答案和解析>>

同步练习册答案