精英家教网 > 高中数学 > 题目详情
9.曲线f(x)=-$\frac{\sqrt{3}}{3}{x}^{3}$+2在x=1处的切线倾斜角是(  )
A.$\frac{1}{6}π$B.$\frac{1}{3}π$C.$\frac{5}{6}π$D.$\frac{2}{3}π$

分析 根据题意求出函数的导数,进而求出切线的斜率,即可得到切线的倾斜角.

解答 解:由题意可得:曲线的方程为:y=-$\frac{\sqrt{3}}{3}$x3+2x,
所以y′=-$\sqrt{3}$x2
所以K=y′|x=1=-$\sqrt{3}$,
所以曲线y=-$\frac{\sqrt{3}}{3}$x3+2x在x=1处的切线的倾斜角是$\frac{2}{3}$π.
故选:D.

点评 本题主要考查导数的几何意义,以及求导公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期为π,且其图象关于直线$x=\frac{π}{6}$对称.
(1)求ω和φ的值;
(2)若$f(\frac{α}{2}-\frac{π}{12})=\frac{3}{5}$,α为锐角,求$cos(α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.用数列归纳法证明$\frac{1}{2}+cosα+cos2α+…+cosnα=\frac{{sin(n+\frac{1}{2})α}}{{2sin\frac{α}{2}}}$时,验证n=1时,左边式子为(  )
A.$\frac{1}{2}$B.cosαC.$\frac{1}{2}+cosα$D.$\frac{{sin\frac{3}{2}α}}{{2sin\frac{α}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知椭圆C的中心在原点,它的一个焦点与抛物线${y^2}=4\sqrt{6}x$的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A,B两点,连接MA,MB.
(1)求椭圆C的方程;
(2)求证:直线MA,MB与x轴所构成的三角形总是以x轴上所在线段为底边的等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数$f(x)=2sin(ωx+ϕ)(ω>0,0<ϕ<\frac{π}{2})$,$f(-\frac{π}{4})=0$,$f(\frac{π}{4}-x)=f(\frac{π}{4}+x)$,且f(x)在$(\frac{π}{18},\frac{2π}{9})$上单调,则ω的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C1:x2=4y的焦点F也是椭圆C2:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2$\sqrt{6}$.
(Ⅰ)求C2的方程;
(Ⅱ)过点F的直线l与C1相交于A,B两点,与C2相交于C、D两点,且$\overrightarrow{AC}$,$\overrightarrow{BD}$同向.若|AC|=|BD|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示的三棱柱ABC-A1B1C1中,底面是正三角形,侧棱BB1⊥面ABC,D是棱BC的中点,点M在棱BB1上,且CM⊥AC1
(1)求证:A1B∥平面AC1D;
(2)求证:CM⊥C1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0
(1)求角C的大小
(2)若c=2,a+b=ab,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个学生通过某次数学测试的概率是$\frac{3}{4}$,他连续测试n次,要保证他至少有一次通过的概率大于0.99,那么n的最小值为4.

查看答案和解析>>

同步练习册答案