分析 (1)由图象上相邻两个最高点的距离为π,利用正弦函数的图象和性质即可得解?(x)的最小正周期,利用周期公式可求ω,根据对称轴可求φ,
(2)由(1)可得f(x)的解析式,根据两角差的余弦公式即可求出
解答 解:(1)∵$\frac{2π}{ω}=T=π$,
∴ω=2,
∵$2×\frac{π}{6}+φ=\frac{π}{2}+kπ$,
∴$φ=\frac{π}{6}+kπ$,k∈Z,
又0<φ<π,
∴$φ=\frac{π}{6}$.
(2)∵$f(x)=sin(2x+\frac{π}{6})$,
∴$f(\frac{α}{2}-\frac{π}{12})=sinα=\frac{3}{5}$.
∵α为锐角,
∴$cosα=\frac{4}{5}$.
∴$cos(α-\frac{π}{3})=cosαcos\frac{π}{3}+sinαsin\frac{π}{3}=\frac{4}{5}×\frac{1}{2}+\frac{3}{5}×\frac{{\sqrt{3}}}{2}=\frac{{4+3\sqrt{3}}}{10}$.
点评 本题主要考查了正弦函数的图象和性质,三角函数周期公式,两角差的余弦公式,同角三角函数基本关系式,考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了数形结合思想和转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{10}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A${\;}_{4}^{3}$ | B. | C${\;}_{4}^{3}$ | C. | 34 | D. | 43 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | -$\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a-b}{c}$>0 | B. | ac2>bc2 | C. | (a+b)( $\frac{1}{a}$+$\frac{1}{b}$)>4 | D. | a2+b2+2>2a+2b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x>2 | B. | $\sqrt{3}<$x<2 | C. | 2<x<$\frac{4}{3}$$\sqrt{3}$ | D. | 2<x≤$\frac{4}{3}$$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}π$ | B. | $\frac{1}{3}π$ | C. | $\frac{5}{6}π$ | D. | $\frac{2}{3}π$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com