精英家教网 > 高中数学 > 题目详情
7.若4个人报名参加3项体育比赛,每个人限报一项,则不同的报名方法的种数有(  )
A.A${\;}_{4}^{3}$B.C${\;}_{4}^{3}$C.34D.43

分析 根据题意,分析可得4人中,每人都有3种情况,由分步计数原理计算可得答案.

解答 解:根据题意,4个人报名参加3项体育比赛,每个人限报一项,
则每人都有3项体育比赛可选,即每人都有3种情况,
则不同的报名方法的种数有3×3×3×3=34种;
故选:C.

点评 本题考查分步计数原理的应用,注意没有要求每一项都必须有人报名.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.$f(x)=Asin(ωx+φ)(A>0,|φ|<\frac{π}{2})$的图象如图所示,为了得到f(x)的图象,则只要将g(x)=cos2x的图象(  )
A.向右平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,已知$\overrightarrow{CA}=\overrightarrow a$,$\overrightarrow{CB}=\overrightarrow b$,AD=2DB,用$\overrightarrow a$、$\overrightarrow b$表示$\overrightarrow{DC}$为(  )
A.$\overrightarrow{DC}=-\frac{5}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\overrightarrow{DC}$=$-\frac{1}{2}\overrightarrow a-\frac{1}{3}\overrightarrow b$C.$\overrightarrow{DC}$=$-\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$D.$\overrightarrow{DC}=-\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=2xlnx,g(x)=x3+ax2-x+2.
(1)如果函数g(x)的单调递减区间为$(-\frac{1}{3},1)$,求函数g(x)的解析式;
(2)在(1)的条件下,求函数y=g(x)的图象在点P(-1,g(-1))处的切线方程;
(3)已知不等式f(x)≤g'(x)+2恒成立,若方程aea-m=0恰有两个不等实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.与-30°终边相同的角是(  )
A.-330°B.150°C.30°D.330°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列an=2n+1,其前n项和为Tn,若不等式nlog2(Tn+4)-λ(n+1)+7≥3n对一切n∈N*恒成立,则实数λ的取值范围为(  )
A.λ≤3B.λ≤4C.2≤λ≤3D.3≤λ≤4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期为π,且其图象关于直线$x=\frac{π}{6}$对称.
(1)求ω和φ的值;
(2)若$f(\frac{α}{2}-\frac{π}{12})=\frac{3}{5}$,α为锐角,求$cos(α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知椭圆C的中心在原点,它的一个焦点与抛物线${y^2}=4\sqrt{6}x$的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A,B两点,连接MA,MB.
(1)求椭圆C的方程;
(2)求证:直线MA,MB与x轴所构成的三角形总是以x轴上所在线段为底边的等腰三角形.

查看答案和解析>>

同步练习册答案