精英家教网 > 高中数学 > 题目详情
8.△ABC中,已知a=2,b=x,B=60°,如果△ABC 有两组解,则x的取值范围(  )
A.x>2B.$\sqrt{3}<$x<2C.2<x<$\frac{4}{3}$$\sqrt{3}$D.2<x≤$\frac{4}{3}$$\sqrt{3}$

分析 由△ABC 有两组解,可得2sin60°<x<2,解出即可得出.

解答 解:∵△ABC 有两组解,∴2sin60°<x<2,
解得$\sqrt{3}<x<2$.
故选:A.

点评 本题考查了正弦定理、解三角形,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,已知$\overrightarrow{CA}=\overrightarrow a$,$\overrightarrow{CB}=\overrightarrow b$,AD=2DB,用$\overrightarrow a$、$\overrightarrow b$表示$\overrightarrow{DC}$为(  )
A.$\overrightarrow{DC}=-\frac{5}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\overrightarrow{DC}$=$-\frac{1}{2}\overrightarrow a-\frac{1}{3}\overrightarrow b$C.$\overrightarrow{DC}$=$-\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$D.$\overrightarrow{DC}=-\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期为π,且其图象关于直线$x=\frac{π}{6}$对称.
(1)求ω和φ的值;
(2)若$f(\frac{α}{2}-\frac{π}{12})=\frac{3}{5}$,α为锐角,求$cos(α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若cos α>0,sin α<0,则角 α的终边在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=x3-ax在x=1处有极值,则实数a为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.用数列归纳法证明$\frac{1}{2}+cosα+cos2α+…+cosnα=\frac{{sin(n+\frac{1}{2})α}}{{2sin\frac{α}{2}}}$时,验证n=1时,左边式子为(  )
A.$\frac{1}{2}$B.cosαC.$\frac{1}{2}+cosα$D.$\frac{{sin\frac{3}{2}α}}{{2sin\frac{α}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知椭圆C的中心在原点,它的一个焦点与抛物线${y^2}=4\sqrt{6}x$的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A,B两点,连接MA,MB.
(1)求椭圆C的方程;
(2)求证:直线MA,MB与x轴所构成的三角形总是以x轴上所在线段为底边的等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0
(1)求角C的大小
(2)若c=2,a+b=ab,求△ABC的面积.

查看答案和解析>>

同步练习册答案